scholarly journals Exonic Disruption Facilitates Antiviral CRISPR-Cas9 Activity for Multistrain HIV-1 Elimination

2021 ◽  
Author(s):  
Jonathan Herskovitz ◽  
Mahmudul Hasan ◽  
Milankumar Patel ◽  
Wilson R. Blomberg ◽  
Jacob D. Cohen ◽  
...  

AbstractA barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high mutation rate of HIV-1 gives rise to numerous circulating strains with increased capacity for immune evasion and antiretroviral drug resistance. To facilitate viral elimination while accounting for this diversity, we propose genetic inactivation of proviral DNA with CRISPR-spCas9. We designed a library of “mosaic gRNAs” against a HIV-1 consensus sequence constructed from 4004 clinical strains, targeting the viral transcriptional regulator tat. Testing in 7 HIV-1 transmitted founder strains led, on average, to viral reductions of 82% with tandem TatD and TatE (TatDE) treatment. No off-target cleavages were recorded. Lentiviral transduction of TatDE attenuated latency reversal by 94% in HIV-infected, transcriptionally silent ACH2 T cells. In all, TatDE guide RNAs successfully disrupted 5 separate HIV-1 exons (tat1-2/rev1-2/gp41) providing a pathway for CRISPR-directed HIV-1 cure therapies.Significance StatementOver 38 million individuals worldwide are infected with HIV-1, which necessitates lifelong dependence on antiretroviral therapy (ART) to prevent viral replication that leads to AIDS. Efforts to rid hosts of HIV-1 are limited by the virus’ abilities to integrate proviral DNA in nuclei, mutate their genomes, and lay dormant for decades during ART treatment. We developed mosaic guide RNAs, TatD and TatE, for CRISPR-Cas9 that recognize the majority of known HIV-1 strains and inactivate 94% of proviral DNA in latently infected cells. Tandem TatDE-CRISPR inactivation of 5 viral exons (tat1-2, rev1-2, and gp41), which blocked HIV-1 replication for 28 days in CD4+ T cells without unwanted editing to the host genome, may serve as a viable strategy for HIV cure.

2021 ◽  
Author(s):  
Hoang Nguyen ◽  
Hannah Wilson ◽  
Sahana Jayakumar ◽  
Viraj Kulkarni ◽  
Smita Kulkarni

Recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas13 proteins are programmable RNA-guided ribonucleases that target single-stranded RNA (ssRNA). CRISPR/Cas13 mediated RNA targeting has emerged as a powerful tool for detecting and eliminating RNA viruses. Here, we demonstrate the effectiveness of CRISPR/Cas13d to inhibit HIV-1 replication. We designed guide RNAs (gRNAs) targeting highly conserved regions of HIV-1. RfxCas13d (CasRx) in combination with HIV-specific gRNAs efficiently inhibited HIV-1 replication in cell line models. Furthermore, simultaneous targeting of four distinct sites in the HIV-1 transcript resulted in robust inhibition of HIV-1 replication. We also show the effective HIV-1 inhibition in primary CD4+ T-cells and suppression of HIV-1 reactivated from latently infected cells using the CRISPR/Cas13d system. Our study demonstrates the utility of the CRISPR/Cas13d nuclease system to target acute and latent HIV infection and provides an alternative treatment modality against HIV.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1850
Author(s):  
Hoang Nguyen ◽  
Hannah Wilson ◽  
Sahana Jayakumar ◽  
Viraj Kulkarni ◽  
Smita Kulkarni

Recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas13 proteins are programmable RNA-guided ribonucleases that target single-stranded RNA (ssRNA). CRISPR/Cas13-mediated RNA targeting has emerged as a powerful tool for detecting and eliminating RNA viruses. Here, we demonstrate the effectiveness of CRISPR/Cas13d to inhibit HIV-1 replication. We designed guide RNAs (gRNAs) targeting highly conserved regions of HIV-1. RfxCas13d (CasRx) in combination with HIV-specific gRNAs efficiently inhibited HIV-1 replication in cell line models. Furthermore, simultaneous targeting of four distinct, non-overlapping sites in the HIV-1 transcript resulted in robust inhibition of HIV-1 replication. We also show the effective HIV-1 inhibition in primary CD4+ T-cells and suppression of HIV-1 reactivated from latently infected cells using the CRISPR/Cas13d system. Our study demonstrates the utility of the CRISPR/Cas13d nuclease system to target acute and latent HIV infection and provides an alternative treatment modality against HIV.


Author(s):  
Alyssa R Martin ◽  
Alexandra M Bender ◽  
Jada Hackman ◽  
Kyungyoon J Kwon ◽  
Briana A Lynch ◽  
...  

Abstract Background The HIV-1 latent reservoir (LR) in resting CD4 + T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. Methods We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from ten HIV-1-infected patients on ART using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. Results The frequencies of CD4 + T cells with intact proviruses were not significantly different in PB vs LN (61vs104/10 6CD4 + cells), and were substantially lower than frequencies of CD4 + T cells with defective proviruses. The frequencies of CD4 + T cells induced to produce high levels of viral RNA were not significantly different in PB vs LN (4.3/10 6 vs 7.9/10 6), but were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. Conclusions These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs


2015 ◽  
Vol 89 (18) ◽  
pp. 9631-9638 ◽  
Author(s):  
Victoria E. K. Walker-Sperling ◽  
Valerie J. Cohen ◽  
Patrick M. Tarwater ◽  
Joel N. Blankson

ABSTRACTThe “shock and kill” model of human immunodeficiency virus type 1 (HIV-1) eradication involves the induction of transcription of HIV-1 genes in latently infected CD4+T cells, followed by the elimination of these infected CD4+T cells by CD8+T cells or other effector cells. CD8+T cells may also be needed to control the spread of new infection if residual infected cells are present at the time combination antiretroviral therapy (cART) is discontinued. In order to determine the time frame needed for CD8+T cells to effectively prevent the spread of HIV-1 infection, we examined the kinetics of HIV transcription and virus release in latently infected cells reactivatedex vivo. Isolated resting, primary CD4+T cells from HIV-positive (HIV+) subjects on suppressive regimens were found to upregulate cell-associated HIV-1 mRNA within 1 h of stimulation and produce extracellular virus as early as 6 h poststimulation. In spite of the rapid kinetics of virus production, we show that CD8+T cells from 2 out of 4 viremic controllers were capable of effectively eliminating reactivated autologous CD4+cells that upregulate cell-associated HIV-1 mRNA. The results have implications for devising strategies to prevent rebound viremia due to reactivation of rare latently infected cells that persist after potentially curative therapy.IMPORTANCEA prominent HIV-1 cure strategy termed “shock and kill” involves the induction of HIV-1 transcription in latently infected CD4+T cells with the goal of elimination of these cells by either the cytotoxic T lymphocyte response or other immune cell subsets. However, the cytotoxic T cell response may also be required after curative treatment if residual latently infected cells remain. The kinetics of HIV-1 reactivation indicate rapid upregulation of cell-associated HIV-1 mRNA and a 5-h window between transcription and virus release. Thus, HIV-specific CD8+T cell responses likely have a very short time frame to eliminate residual latently infected CD4+T cells that become reactivated after discontinuation of antiretroviral therapy following potentially curative treatment strategies.


2019 ◽  
Author(s):  
Birgitta Lindqvist ◽  
Sara Svensson Akusjarvi ◽  
Anders Sonnerborg ◽  
Marios Dimitriou ◽  
J. Peter Svensson

Human immunodeficiency virus type 1 (HIV-1) infection is a chronic condition, where viral DNA integrates into the genome. Latently infected cells form a persistent, heterogeneous reservoir. The reservoir that reinstates an active replication comprises only cells with intact provirus that can be reactivated. We confirmed that latently infected cells from patients exhibited active transcription throughout the provirus. To find transcriptional determinants, we characterized the establishment and maintenance of viral latency during proviral chromatin maturation in cultures of primary CD4+ T-cells for four months after ex vivo HIV-1 infection. As heterochromatin (marked with H3K9me3 or H3K27me3) gradually stabilized, the provirus became less accessible with reduced activation potential. In a subset of infected cells, active marks (i.e., H3K27ac) remained detectable, even after prolonged proviral silencing. After T-cell activation, the proviral activation occurred uniquely in cells with H3K27ac-marked proviruses. Our observations suggested that, after transient proviral activation, cells were actively returned to latency.


2019 ◽  
Author(s):  
Mateusz Stoszko ◽  
Abdullah M.S. Al-Hatmi ◽  
Anton Skriba ◽  
Michael Roling ◽  
Enrico Ne ◽  
...  

AbstractA leading pharmacological strategy towards HIV cure requires “shock” or activation of HIV gene expression in latently infected cells with Latency Reversal Agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs we used fungal secondary metabolites (extrolites) as a source of bio-active molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the P-TEFb inhibitory 7SK snRNP complex to be significantly reduced upon GTX treatment of independent donor CD4+T cells. GTX disrupted 7SK snRNP, releasing active P-TEFb, which then phosphorylated RNA Pol II CTD, inducing HIV transcription. Our data highlight the power of combining a medium throughput bioassay, mycology and orthogonal mass spectrometry to identify novel potentially therapeutic compounds.


2019 ◽  
Vol 116 (6) ◽  
pp. 2282-2289 ◽  
Author(s):  
Manabu Taura ◽  
Eric Song ◽  
Ya-Chi Ho ◽  
Akiko Iwasaki

HIV-1 integrates into the genome of target cells and establishes latency indefinitely. Understanding the molecular mechanism of HIV-1 latency maintenance is needed for therapeutic strategies to combat existing infection. In this study, we found an unexpected role for Apobec3A (apolipoprotein B MRNA editing enzyme catalytic subunit 3A, abbreviated “A3A”) in maintaining the latency state within HIV-1–infected cells. Overexpression of A3A in latently infected cell lines led to lower reactivation, while knockdown or knockout of A3A led to increased spontaneous and inducible HIV-1 reactivation. A3A maintains HIV-1 latency by associating with proviral DNA at the 5′ long terminal repeat region, recruiting KAP1 and HP1, and imposing repressive histone marks. We show that knockdown of A3A in latently infected human primary CD4 T cells enhanced HIV-1 reactivation. Collectively, we provide evidence and a mechanism by which A3A reinforces HIV-1 latency in infected CD4 T cells.


2019 ◽  
Vol 93 (10) ◽  
Author(s):  
George N. Llewellyn ◽  
Eduardo Seclén ◽  
Stephen Wietgrefe ◽  
Siyu Liu ◽  
Morgan Chateau ◽  
...  

ABSTRACTCombination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used anex vivolatency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use theex vivolatency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishesin vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCEHIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body’s immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.


2021 ◽  
Author(s):  
Jeffrey Kuniholm ◽  
Elise Armstrong ◽  
Brandy Bernabe ◽  
Carolyn Coote ◽  
Anna Berenson ◽  
...  

ABSTRACTHIV-establishes a persistent proviral reservoir by integrating into the genome of infected host cells. Current antiretroviral treatments do not target this persistent population of proviruses which include latently infected cells that upon treatment interruption can be reactivated to contribute to HIV-1 rebound. Deep sequencing of persistent HIV proviruses has revealed that greater than 90% of integrated HIV genomes are defective and unable to produce infectious virions. We hypothesized that intragenic elements in the HIV genome support transcription of aberrant HIV-1 RNAs from defective proviruses that lack long terminal repeats (LTRs). Using an intact provirus detection assay, we observed that resting CD4+ T cells and monocyte-derived macrophages (MDMs) are biased towards generating defective HIV-1 proviruses. Multiplex reverse transcription digital drop PCR identified Env and Nef transcripts which lacked 5’ untranslated regions (UTR) in acutely infected CD4+ T cells and MDMs indicating transcripts are generated that do not utilize the promoter within the LTR. 5’UTR-deficient Env transcripts were also identified in a cohort of people living with HIV (PLWH) on ART, suggesting that these aberrant RNAs are produced in vivo. Using 5’ rapid amplification of cDNA ends (RACE), we mapped the start site of these transcripts within the Env gene. This region bound several cellular transcription factors and functioned as a transcriptional regulatory element that could support transcription and translation of downstream HIV-1 RNAs. These studies provide mechanistic insights into how defective HIV-1 proviruses are persistently expressed to potentially drive inflammation in PLWH.Author SummaryPeople living with HIV establish a persistent reservoir which includes latently infected cells that fuel viral rebound upon treatment interruption. However, the majority of HIV-1 genomes in these persistently infected cells are defective. Whether these defective HIV genomes are expressed and whether they contribute to HIV associated diseases including accelerated aging, neurodegenerative symptoms, and cardiovascular diseases are still outstanding questions. In this paper, we demonstrate that acute infection of macrophages and resting T cells is biased towards generating defective viruses which are expressed by DNA regulatory elements in the HIV genome. These studies describe an alternative mechanism for chronic expression of HIV genomes.


Author(s):  
Pilar Mendoza ◽  
Julia R. Jackson ◽  
Thiago Oliveira ◽  
Christian Gaebler ◽  
Victor Ramos ◽  
...  

AbstractAntiretroviral therapy suppresses but does not cure HIV-1 infection due to the existence of a long-lived reservoir of latently infected cells. The reservoir has an estimated half-life of 44 months and is largely composed of clones of infected CD4+ T cells. The long half-life appears to result in part from expansion and contraction of infected CD4+ T cell clones. However, the mechanisms that govern this process are poorly understood. To determine whether the clones might result from, and be maintained by exposure to antigen, we measured responses of reservoir cells to a small subset of antigens from viruses that produce chronic or recurrent infections. Despite the limited panel of test antigens, clones of antigen responsive CD4+ T cells containing defective or intact latent proviruses were found in 7 out of 8 individuals studied. Thus, chronic or repeated exposure to antigen may contribute to the longevity of the HIV-1 reservoir by stimulating the clonal expansion of latently infected CD4+ T cells.


Sign in / Sign up

Export Citation Format

Share Document