scholarly journals Single particle combinatorial multiplexed liposome fusion mediated by DNA

2021 ◽  
Author(s):  
Mette Galsgaard Malle ◽  
Philipp M. G. Löffler ◽  
Søren S.-R. Bohr ◽  
Magnus Berg Sletfjerding ◽  
Nikolaj Alexander Risgaard ◽  
...  

AbstractCombinatorial high throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large scale analyses and thus limited by long running time and excessive materials cost. We herein present Single PARticle Combinatorial multiplexed Liposome fusion mediated by DNA (SPARCLD), for the parallelized, multi-step and non-deterministic fusion of individual zeptoliter nanocontainers. We observed directly the efficient (>93%), and leakage free stochastic fusion sequences for arrays of surface tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated ssDNA (LiNA) and fluorescent barcoded by distinct ratio of chromophores. The stochastic fusion results in distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time TIRF imaging allowed the direct observation of >16000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface tethered target nanocontainers ∼42,000 containers per mm2 offers entire combinatorial multiplex screens using only picograms of material.

2021 ◽  
Author(s):  
Mette Malle ◽  
Philipp Loffler ◽  
Soeren Bohr ◽  
Magnus Sletfjerding ◽  
Nikolaj Risgaard ◽  
...  

Abstract Combinatorial high throughput methodologies are central for both screening and discovery in synthetic biochemistry and biomedical sciences. They are, however, often reliant on large scale analyses and thus limited by long running time and excessive materials cost. We herein present Single PARticle Combinatorial multiplexed Liposome fusion mediated by DNA (SPARCLD), for the parallelized, multi-step and non-deterministic fusion of individual zeptoliter nanocontainers. We observed directly the efficient (>93%), and leakage free stochastic fusion sequences for arrays of surface tethered target liposomes with six freely diffusing populations of cargo liposomes, each functionalized with individual lipidated ssDNA (LiNA) and fluorescent barcoded by distinct ratio of chromophores. The stochastic fusion results in distinct permutation of fusion sequences for each autonomous nanocontainer. Real-time TIRF imaging allowed the direct observation of >16000 fusions and 566 distinct fusion sequences accurately classified using machine learning. The high-density arrays of surface tethered target nanocontainers ~42,000 containers per mm2 offers entire combinatorial multiplex screens using only picograms of material.


2021 ◽  
Author(s):  
Arturo Magana-Mora ◽  
Mohammad AlJubran ◽  
Jothibasu Ramasamy ◽  
Mohammed AlBassam ◽  
Chinthaka Gooneratne ◽  
...  

Abstract Objective/Scope. Lost circulation events (LCEs) are among the top causes for drilling nonproductive time (NPT). The presence of natural fractures and vugular formations causes loss of drilling fluid circulation. Drilling depleted zones with incorrect mud weights can also lead to drilling induced losses. LCEs can also develop into additional drilling hazards, such as stuck pipe incidents, kicks, and blowouts. An LCE is traditionally diagnosed only when there is a reduction in mud volume in mud pits in the case of moderate losses or reduction of mud column in the annulus in total losses. Using machine learning (ML) for predicting the presence of a loss zone and the estimation of fracture parameters ahead is very beneficial as it can immediately alert the drilling crew in order for them to take the required actions to mitigate or cure LCEs. Methods, Procedures, Process. Although different computational methods have been proposed for the prediction of LCEs, there is a need to further improve the models and reduce the number of false alarms. Robust and generalizable ML models require a sufficiently large amount of data that captures the different parameters and scenarios representing an LCE. For this, we derived a framework that automatically searches through historical data, locates LCEs, and extracts the surface drilling and rheology parameters surrounding such events. Results, Observations, and Conclusions. We derived different ML models utilizing various algorithms and evaluated them using the data-split technique at the level of wells to find the most suitable model for the prediction of an LCE. From the model comparison, random forest classifier achieved the best results and successfully predicted LCEs before they occurred. The developed LCE model is designed to be implemented in the real-time drilling portal as an aid to the drilling engineers and the rig crew to minimize or avoid NPT. Novel/Additive Information. The main contribution of this study is the analysis of real-time surface drilling parameters and sensor data to predict an LCE from a statistically representative number of wells. The large-scale analysis of several wells that appropriately describe the different conditions before an LCE is critical for avoiding model undertraining or lack of model generalization. Finally, we formulated the prediction of LCEs as a time-series problem and considered parameter trends to accurately determine the early signs of LCEs.


2021 ◽  
Author(s):  
Aurore Lafond ◽  
Maurice Ringer ◽  
Florian Le Blay ◽  
Jiaxu Liu ◽  
Ekaterina Millan ◽  
...  

Abstract Abnormal surface pressure is typically the first indicator of a number of problematic events, including kicks, losses, washouts and stuck pipe. These events account for 60–70% of all drilling-related nonproductive time, so their early and accurate detection has the potential to save the industry billions of dollars. Detecting these events today requires an expert user watching multiple curves, which can be costly, and subject to human errors. The solution presented in this paper is aiming at augmenting traditional models with new machine learning techniques, which enable to detect these events automatically and help the monitoring of the drilling well. Today’s real-time monitoring systems employ complex physical models to estimate surface standpipe pressure while drilling. These require many inputs and are difficult to calibrate. Machine learning is an alternative method to predict pump pressure, but this alone needs significant labelled training data, which is often lacking in the drilling world. The new system combines these approaches: a machine learning framework is used to enable automated learning while the physical models work to compensate any gaps in the training data. The system uses only standard surface measurements, is fully automated, and is continuously retrained while drilling to ensure the most accurate pressure prediction. In addition, a stochastic (Bayesian) machine learning technique is used, which enables not only a prediction of the pressure, but also the uncertainty and confidence of this prediction. Last, the new system includes a data quality control workflow. It discards periods of low data quality for the pressure anomaly detection and enables to have a smarter real-time events analysis. The new system has been tested on historical wells using a new test and validation framework. The framework runs the system automatically on large volumes of both historical and simulated data, to enable cross-referencing the results with observations. In this paper, we show the results of the automated test framework as well as the capabilities of the new system in two specific case studies, one on land and another offshore. Moreover, large scale statistics enlighten the reliability and the efficiency of this new detection workflow. The new system builds on the trend in our industry to better capture and utilize digital data for optimizing drilling.


Inventions ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Ryota Sawaki ◽  
Daisuke Sato ◽  
Hiroko Nakayama ◽  
Yuki Nakagawa ◽  
Yasuhito Shimada

Background: Zebrafish are efficient animal models for conducting whole organism drug testing and toxicological evaluation of chemicals. They are frequently used for high-throughput screening owing to their high fecundity. Peripheral experimental equipment and analytical software are required for zebrafish screening, which need to be further developed. Machine learning has emerged as a powerful tool for large-scale image analysis and has been applied in zebrafish research as well. However, its use by individual researchers is restricted due to the cost and the procedure of machine learning for specific research purposes. Methods: We developed a simple and easy method for zebrafish image analysis, particularly fluorescent labelled ones, using the free machine learning program Google AutoML. We performed machine learning using vascular- and macrophage-Enhanced Green Fluorescent Protein (EGFP) fishes under normal and abnormal conditions (treated with anti-angiogenesis drugs or by wounding the caudal fin). Then, we tested the system using a new set of zebrafish images. Results: While machine learning can detect abnormalities in the fish in both strains with more than 95% accuracy, the learning procedure needs image pre-processing for the images of the macrophage-EGFP fishes. In addition, we developed a batch uploading software, ZF-ImageR, for Windows (.exe) and MacOS (.app) to enable high-throughput analysis using AutoML. Conclusions: We established a protocol to utilize conventional machine learning platforms for analyzing zebrafish phenotypes, which enables fluorescence-based, phenotype-driven zebrafish screening.


2016 ◽  
Vol 25 (5) ◽  
pp. 051204
Author(s):  
Justin A. Eichel ◽  
Akshaya Mishra ◽  
Nicholas Miller ◽  
Nicholas Jankovic ◽  
Mohan A. Thomas ◽  
...  

2021 ◽  
Author(s):  
Koji Yonekura ◽  
Saori Maki-Yonekura ◽  
Hisashi Naitow ◽  
Tasuku Hamaguchi ◽  
Kiyofumi Takaba

In cryo-electron microscopy (cryo-EM) data collection, locating a target object is the most error-prone. Here, we present a machine learning-based approach with a real-time object locator named yoneoLocr using YOLO, a well-known object detection system. Implementation showed its effectiveness in rapidly and precisely locating carbon holes in single particle cryo-EM and for locating crystals and evaluating electron diffraction (ED) patterns in automated cryo-electron crystallography (cryo-EX) data collection.


2019 ◽  
Author(s):  
Zach Werkhoven ◽  
Christian Rohrsen ◽  
Chuan Qin ◽  
Björn Brembs ◽  
Benjamin de Bivort

AbstractFast object tracking in real time allows convenient tracking of very large numbers of animals and closed-loop experiments that control stimuli for multiple animals in parallel. We developed MARGO, a real-time animal tracking suite for custom behavioral experiments. We demonstrated that MARGO can rapidly and accurately track large numbers of animals in parallel over very long timescales. We incorporated control of peripheral hardware, and implemented a flexible software architecture for defining new experimental routines. These features enable closed-loop delivery of stimuli to many individuals simultaneously. We highlight MARGO’s ability to coordinate tracking and hardware control with two custom behavioral assays (measuring phototaxis and optomotor response) and one optogenetic operant conditioning assay. There are currently several open source animal trackers. MARGO’s strengths are 1) robustness, 2) high throughput, 3) flexible control of hardware and 4) real-time closed-loop control of sensory and optogenetic stimuli, all of which are optimized for large-scale experimentation.


2022 ◽  
Author(s):  
Shomik Verma ◽  
Miguel Rivera ◽  
David O. Scanlon ◽  
Aron Walsh

Understanding the excited state properties of molecules provides insights into how they interact with light. These interactions can be exploited to design compounds for photochemical applications, including enhanced spectral conversion of light to increase the efficiency of photovoltaic cells. While chemical discovery is time- and resource-intensive experimentally, computational chemistry can be used to screen large-scale databases for molecules of interest in a procedure known as high-throughput virtual screening. The first step usually involves a high-speed but low-accuracy method to screen large numbers of molecules (potentially millions) so only the best candidates are evaluated with expensive methods. However, use of a coarse first-pass screening method can potentially result in high false positive or false negative rates. Therefore, this study uses machine learning to calibrate a high-throughput technique (xTB-sTDA) against a higher accuracy one (TD-DFT). Testing the calibration model shows a ~5-fold decrease in error in-domain and a ~3-fold decrease out-of-domain. The resulting mean absolute error of ~0.14 eV is in line with previous work in machine learning calibrations and out-performs previous work in linear calibration of xTB-sTDA. We then apply the calibration model to screen a 250k molecule database and map inaccuracies of xTB-sTDA in chemical space. We also show generalizability of the workflow by calibrating against a higher-level technique (CC2), yielding a similarly low error. Overall, this work demonstrates machine learning can be used to develop a both cheap and accurate method for large-scale excited state screening, enabling accelerated molecular discovery across a variety of disciplines.


2020 ◽  
Vol 12 (14) ◽  
pp. 2244
Author(s):  
Luis Moya ◽  
Erick Mas ◽  
Shunichi Koshimura

Applications of machine learning on remote sensing data appear to be endless. Its use in damage identification for early response in the aftermath of a large-scale disaster has a specific issue. The collection of training data right after a disaster is costly, time-consuming, and many times impossible. This study analyzes a possible solution to the referred issue: the collection of training data from past disaster events to calibrate a discriminant function. Then the identification of affected areas in a current disaster can be performed in near real-time. The performance of a supervised machine learning classifier to learn from training data collected from the 2018 heavy rainfall at Okayama Prefecture, Japan, and to identify floods due to the typhoon Hagibis on 12 October 2019 at eastern Japan is reported in this paper. The results show a moderate agreement with flood maps provided by local governments and public institutions, and support the assumption that previous disaster information can be used to identify a current disaster in near-real time.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 176 ◽  
Author(s):  
Mathilde Gondard ◽  
Sabine Delannoy ◽  
Valérie Pinarello ◽  
Rosalie Aprelon ◽  
Elodie Devillers ◽  
...  

Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of Amblyomma variegatum and 446 of Rhipicephalus microplus collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area—Ehrlichia ruminantium, Rickettsia africae, Anaplasma marginale, Babesia bigemina and Babesia bovis—but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the Anaplasma, Ehrlichia, Borrelia and Leishmania genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens.


Sign in / Sign up

Export Citation Format

Share Document