scholarly journals Topology Testing and Demographic Modeling Illuminate a Novel Speciation Pathway in the Greater Caribbean Sea Following the Formation of the Isthmus of Panama

2021 ◽  
Author(s):  
Benjamin M. Titus ◽  
H. Lisle Gibbs ◽  
Nuno Simões ◽  
Marymegan Daly

AbstractRecent genomic analyses have highlighted the prevalence of speciation with gene flow in many taxa and have underscored the importance of accounting for these reticulate evolutionary processes when constructing species trees and generating parameter estimates. This is especially important for deepening our understanding of speciation in the sea where fast moving ocean currents, expanses of deep water, and periodic episodes of sea level rise and fall act as soft and temporary allopatric barriers that facilitate both divergence and secondary contact. Under these conditions, gene flow is not expected to cease completely while contemporary distributions are expected to differ from historical ones. Here we conduct range-wide sampling for Pederson’s cleaner shrimp (Ancylomenes pedersoni), a species complex from the Greater Caribbean that contains three clearly delimited mitochondrial lineages with both allopatric and sympatric distributions. Using mtDNA barcodes and a genomic ddRADseq approach, we combine classic phylogenetic analyses with extensive topology testing and demographic modeling (10 site frequency replicates x 45 evolutionary models x 50 model simulations/replicate = 22,500 simulations) to test species boundaries and reconstruct the evolutionary history of what was expected to be a simple case study. Instead, our results indicate a history of allopatric divergence, secondary contact, introgression, and endemic hybrid speciation driven by the final closure of the Isthmus of Panama and the strengthening of the Gulf Stream Current ~3.5 million years ago. The history of this species complex recovered by model-based methods that allow reticulation differs from that recovered by standard phylogenetic analyses and is unexpected given contemporary distributions. The geologically and biologically meaningful insights gained by our model selection analyses illuminate a novel pathway of species formation that resulted from one of the most biogeographically significant events in Earth’s history.


2019 ◽  
Vol 128 (1) ◽  
pp. 149-169 ◽  
Author(s):  
Drew R Schield ◽  
Blair W Perry ◽  
Richard H Adams ◽  
Daren C Card ◽  
Tereza Jezkova ◽  
...  

Abstract The study of recently diverged lineages whose geographical ranges come into contact can provide insight into the early stages of speciation and the potential roles of reproductive isolation in generating and maintaining species. Such insight can also be important for understanding the strategies and challenges for delimiting species within recently diverged species complexes. Here, we use mitochondrial and nuclear genetic data to study population structure, gene flow and demographic history across a geographically widespread rattlesnake clade, the western rattlesnake species complex (Crotalus cerberus, Crotalus viridis, Crotalus oreganus and relatives), which contains multiple lineages with ranges that overlap geographically or contact one another. We find evidence that the evolutionary history of this group does not conform to a bifurcating tree model and that pervasive gene flow has broadly influenced patterns of present-day genetic diversity. Our results suggest that lineage diversity has been shaped largely by drift and divergent selection in isolation, followed by secondary contact, in which reproductive isolating mechanisms appear weak and insufficient to prevent introgression, even between anciently diverged lineages. The complexity of divergence and secondary contact with gene flow among lineages also provides new context for why delimiting species within this complex has been difficult and contentious historically.



PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1910 ◽  
Author(s):  
Quentin Rougemont ◽  
Camille Roux ◽  
Samuel Neuenschwander ◽  
Jerome Goudet ◽  
Sophie Launey ◽  
...  

Inferring the history of isolation and gene flow during species divergence is a central question in evolutionary biology. The European river lamprey (Lampetra fluviatilis) and brook lamprey(L. planeri)show a low reproductive isolation but have highly distinct life histories, the former being parasitic-anadromous and the latter non-parasitic and freshwater resident. Here we used microsatellite data from six replicated population pairs to reconstruct their history of divergence using an approximate Bayesian computation framework combined with a random forest model. In most population pairs, scenarios of divergence with recent isolation were outcompeted by scenarios proposing ongoing gene flow, namely the Secondary Contact (SC) and Isolation with Migration (IM) models. The estimation of demographic parameters under the SC model indicated a time of secondary contact close to the time of speciation, explaining why SC and IM models could not be discriminated. In case of an ancient secondary contact, the historical signal of divergence is lost and neutral markers converge to the same equilibrium as under the less parameterized model allowing ongoing gene flow. Our results imply that models of secondary contacts should be systematically compared to models of divergence with gene flow; given the difficulty to discriminate among these models, we suggest that genome-wide data are needed to adequately reconstruct divergence history.



2016 ◽  
Author(s):  
Clément Rougeux ◽  
Louis Bernatchez ◽  
Pierre-Alexandre Gagnaire

AbstractParallel divergence patterns across replicated species pairs occurring in similar environmental contrasts may arise through distinct evolutionary scenarios. Deciphering whether such parallelism actually reflects repeated parallel divergence driven by divergent selection or a single divergence event with subsequent gene flow needs to be ascertained. Reconstructing historical gene flow is therefore of fundamental interest to understand how demography and selection jointly shaped genomic divergence during speciation. Here, we use an extended modeling framework to explore the multiple facets of speciation-with-gene-flow with demo-genetic divergence models that capture both temporal and genomic variation in effective population size and migration rate. We investigate the divergence history of five sympatric Lake Whitefish limnetic (dwarf) and benthic (normal) species pairs characterized by variable degrees of ecological divergence and reproductive isolation. Genome-wide SNPs were used to document the extent of genetic differentiation in each species pair, and 26 divergence models were fitted and compared to the unfolded joint allele frequency spectrum of each pair. We found evidence that a recent (circa 3000-4000 generations) asymmetrical secondary contact between expanding post-glacial populations has accompanied Whitefish diversification. Our results suggest that heterogeneous genomic differentiation patterns have emerged through the combined effects of linked selection generating variable rates of lineage sorting across the genome during geographical isolation, and heterogeneous introgression eroding divergence at different rates across the genome upon secondary contact. This study thus provides a new retrospective insight into the historical demographic and selective processes that shaped a continuum of divergence associated with ecological speciation.



2020 ◽  
Author(s):  
Steven M. Van Belleghem ◽  
Jared M. Cole ◽  
Gabriela Montejo-Kovacevich ◽  
Caroline N. Bacquet ◽  
W. Owen McMillan ◽  
...  

AbstractCharacterizing the genetic architecture of species boundaries remains a difficult task. Hybridizing species provide a powerful system to identify the factors that shape genomic variation and, ultimately, identify the regions of the genome that maintain species boundaries. Unfortunately, complex histories of isolation, admixture and selection can generate heterogenous genomic landscapes of divergence which make inferences about the regions that are responsible for species boundaries problematic. However, as the signal of admixture and selection on genomic loci varies with recombination rate, their relationship can be used to infer their relative importance during speciation. Here, we explore patterns of genomic divergence, admixture and recombination rate among hybridizing lineages across the Heliconius erato radiation. We focus on the incipient species, H. erato and H. himera, and distinguish the processes that drive genomic divergence across three contact zones where they frequently hybridize. Using demographic modeling and simulations, we infer that periods of isolation and selection have been major causes of genome-wide correlation patterns between recombination rate and divergence between these incipient species. Upon secondary contact, we found surprisingly highly asymmetrical introgression between the species pair, with a paucity of H. erato alleles introgressing into the H. himera genomes. We suggest that this signal may result from a current polygenic species boundary between the hybridizing lineages. These results contribute to a growing appreciation for the importance of polygenic architectures of species boundaries and pervasive genome-wide selection during the early stages of speciation with gene flow.



2021 ◽  
Author(s):  
Vanina Tonzo ◽  
AdriÀ Bellvert ◽  
Joaquín Ortego

AbstractInferring the ecological and evolutionary processes underlying lineage and phenotypic diversification is of paramount importance to shed light on the origin of contemporary patterns of biological diversity. However, reconstructing phylogenetic relationships in recent evolutionary radiations represents a major challenge due to the frequent co-occurrence of incomplete lineage sorting and introgression. In this study, we combined high throughput sequence data (ddRADseq), geometric morphometric information, and novel phylogenetic inference methods that explicitly account for gene flow to infer the evolutionary relationships and the timing and mode of diversification in a complex of Ibero-Maghrebian montane grasshoppers of the subgenus Dreuxius (genus Omocestus). Our analyses supported the phenotypic distinctiveness of most sister taxa, two events of historical introgression involving lineages at different stages of the diversification continuum, and the recent Pleistocene origin (< 1 Ma) of the complex. Phylogenetic analyses did not recover the reciprocal monophyly of taxa from Iberia and northwestern Africa, supporting overseas migration between the two continents during the Pleistocene. Collectively, these results indicate that periods of isolation and secondary contact linked to Pleistocene glacial cycles likely contributed to both allopatric speciation and post divergence gene flow in the complex. This study exemplifies how the integration of multiple lines of evidence can help to reconstruct complex histories of reticulated evolution and highlights the important role of Quaternary climatic oscillations as a diversification engine in the Ibero-Maghrebian biodiversity hotspot.



2018 ◽  
Author(s):  
Benjamin M. Titus ◽  
Paul D. Blischak ◽  
Marymegan Daly

AbstractSympatric diversification is increasingly thought to have played an important role in the evolution of biodiversity around the globe. However, an in situ sympatric origin for co-distributed taxa is difficult to demonstrate empirically because different evolutionary processes can lead to similar biogeographic outcomes-especially in ecosystems with few hard barriers to dispersal that can facilitate allopatric speciation followed by secondary contact (e.g. marine habitats). Here we use a genomic (ddRADseq), model-based approach to delimit a cryptic species complex of tropical sea anemones that are co-distributed on coral reefs throughout the Tropical Western Atlantic. We use coalescent simulations in fastsimcoal2 to test competing diversification scenarios that span the allopatric-sympatric continuum. We recover support that the corkscrew sea anemone Bartholomea annulata (Le Sueur, 1817) is a cryptic species complex, co-distributed throughout its range. Simulation and model selection analyses suggest these lineages arose in the face of historical and contemporary gene flow, supporting a sympatric origin, but an alternative secondary contact model also receives appreciable model support. Leveraging the genome of Exaiptasia pallida we identify five loci under divergent selection between cryptic B. annulata lineages that fall within mRNA transcripts or CDS regions. Our study provides a rare empirical, genomic example of sympatric speciation in a tropical anthozoan-a group that includes reef-building corals. Finally, these data represent the first range-wide molecular study of any tropical sea anemone, underscoring that anemone diversity is under described in the tropics, and highlighting the need for additional systematic studies into these ecologically and economically important species.



2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Megan Phifer-Rixey ◽  
Bettina Harr ◽  
Jody Hey

Abstract Background The three main subspecies of house mice, Mus musculus castaneus, Mus musculus domesticus, and Mus musculus musculus, are estimated to have diverged ~ 350-500KYA. Resolution of the details of their evolutionary history is complicated by their relatively recent divergence, ongoing gene flow among the subspecies, and complex demographic histories. Previous studies have been limited to some extent by the number of loci surveyed and/or by the scope of the method used. Here, we apply a method (IMa3) that provides an estimate of a population phylogeny while allowing for complex histories of gene exchange. Results Results strongly support a topology with M. m. domesticus as sister to M. m. castaneus and M. m. musculus. In addition, we find evidence of gene flow between all pairs of subspecies, but that gene flow is most restricted from M. m. musculus into M. m. domesticus. Estimates of other key parameters are dependent on assumptions regarding generation time and mutation rate in house mice. Nevertheless, our results support previous findings that the effective population size, Ne, of M. m. castaneus is larger than that of the other two subspecies, that the three subspecies began diverging ~ 130 - 420KYA, and that the time between divergence events was short. Conclusions Joint demographic and phylogenetic analyses of genomic data provide a clearer picture of the history of divergence in house mice.



2020 ◽  
Vol 45 (2) ◽  
pp. 361-374
Author(s):  
Jessica Nayara Carvalho Francisco ◽  
Lúcia G. Lohmann

Abstract—The Amazon houses a large proportion of the overall biodiversity currently found on Earth. Despite that, our knowledge of Amazonian biodiversity is still limited. In this study, we reconstruct the phylogeny of Pachyptera (Bignoniaceae), a genus of neotropical lianas that is centered in the Amazon. We then use this phylogenetic framework to re-evaluate species limits and study the biogeographic history of the genus. We sampled three molecular markers (i.e. ndhF, rpl32-trnL, and PepC) and 51 individuals representing the breadth of morphological variation and geographic distribution of all species recognized in the genus. We used this information to reconstruct phylogenetic relationships among individuals of Pachyptera using Bayesian and maximum likelihood approaches. The resulting molecular phylogeny was used as a basis to test species limits within the P. kerere species complex using a cpDNA coalescent approach (GMYC). GMYC identified five potential species within the P. kerere species complex that were subsequently evaluated in the light of morphology. Morphological data supported the recognition of four of the five potential species suggested by GMYC, all of which were also supported by a multispecies coalescent model in a Bayesian framework. The phylogeny of Pachyptera was time-calibrated and used to reconstruct the biogeographical history of the genus. We identified historically important migration pathways using our comprehensive cpDNA dataset and a Bayesian stochastic search variable selection (BSSVS) framework. Our results indicate that the genus originated in lowland Amazonia during the Middle Eocene, and subsequently occupied Central America and the Andes. Most of the diversification of Pachyptera occurred in the Miocene, a period of intense perturbations in South America.



2010 ◽  
Vol 278 (1704) ◽  
pp. 399-407 ◽  
Author(s):  
Patrik Nosil ◽  
Samuel M. Flaxman

Two models for speciation via selection have been proposed. In the well-known model of ‘ecological speciation’, divergent natural selection between environments drives the evolution of reproductive isolation. In a second ‘mutation-order’ model, different, incompatible mutations (alleles) fix in different populations adapting to the same selective pressure. How to demonstrate mutation-order speciation has been unclear, although it has been argued that it can be ruled out when gene flow occurs because the same, most advantageous allele will fix in all populations. However, quantitative examination of the interaction of factors influencing the likelihood of mutation-order speciation is lacking. We used simulation models to study how gene flow, hybrid incompatibility, selective advantage, timing of origination of new mutations and an initial period of allopatric differentiation affect population divergence via the mutation-order process. We find that at least some population divergence can occur under a reasonably wide range of conditions, even with moderate gene flow. However, strong divergence (e.g. fixation of different alleles in different populations) requires very low gene flow, and is promoted when (i) incompatible mutations have similar fitness advantages, (ii) less fit mutations arise slightly earlier in evolutionary time than more fit alternatives, and (iii) allopatric divergence occurs prior to secondary contact.



2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Paul C. Kirchberger ◽  
Kristina M. Sefc ◽  
Christian Sturmbauer ◽  
Stephan Koblmüller

Hybridization among littoral cichlid species in Lake Tanganyika was inferred in several molecular phylogenetic studies. The phenomenon is generally attributed to the lake level-induced shoreline and habitat changes. These allow for allopatric divergence of geographically fragmented populations alternating with locally restricted secondary contact and introgression between incompletely isolated taxa. In contrast, the deepwater habitat is characterized by weak geographic structure and a high potential for gene flow, which may explain the lower species richness of deepwater than littoral lineages. For the same reason, divergent deepwater lineages should have evolved strong intrinsic reproductive isolation already in the incipient stages of diversification, and, consequently, hybridization among established lineages should have been less frequent than in littoral lineages. We test this hypothesis in the endemic Lake Tanganyika deepwater cichlid tribe Bathybatini by comparing phylogenetic trees of Hemibates and Bathybates species obtained with nuclear multilocus AFLP data with a phylogeny based on mitochondrial sequences. Consistent with our hypothesis, largely congruent tree topologies and negative tests for introgression provided no evidence for introgressive hybridization between the deepwater taxa. Together, the nuclear and mitochondrial data established a well-supported phylogeny and suggested ecological segregation during speciation.



Sign in / Sign up

Export Citation Format

Share Document