scholarly journals Foveal vision at the time of microsaccades

2021 ◽  
Author(s):  
Naghmeh Mostofi ◽  
Janis Intoy ◽  
Michele Rucci

AbstractHumans use rapid eye movements (saccades) to inspect stimuli with the foveola, the region of the retina where receptors are most densely packed. It is well established that visual sensitivity is generally attenuated during these movements, a phenomenon known as saccadic suppression. This effect is commonly studied with large, often peripheral, stimuli presented during instructed saccades. However, little is known about how saccades modulate the foveola and how the resulting dynamics unfold during natural visual exploration. Here we measured the foveal dynamics of saccadic suppression in a naturalistic high-acuity task, a task designed after primate’s social grooming, which—like most explorations of fine patterns—primarily elicits minute saccades (microsaccades). Leveraging on recent advances in gaze-contingent display control, we were able to systematically map the peri-saccadic time-course of sensitivity across the foveola. We show that contrast sensitivity is not uniform across this region and that both the extent and dynamics of saccadic suppression vary within the foveola. Suppression is stronger and faster in the most central portion, where sensitivity is generally higher and selectively rebounds at the onset of a new fixation. These results shed new light on the modulations experienced by foveal vision during the saccade-fixation cycle and explain some of the benefits of microsaccades.

2021 ◽  
Vol 118 (37) ◽  
pp. e2101259118
Author(s):  
Janis Intoy ◽  
Naghmeh Mostofi ◽  
Michele Rucci

Humans use rapid eye movements (saccades) to inspect stimuli with the foveola, the region of the retina where receptors are most densely packed. It is well established that visual sensitivity is generally attenuated during these movements, a phenomenon known as saccadic suppression. This effect is commonly studied with large, often peripheral, stimuli presented during instructed saccades. However, little is known about how saccades modulate the foveola and how the resulting dynamics unfold during natural visual exploration. Here we measured the foveal dynamics of saccadic suppression in a naturalistic high-acuity task, a task designed after primates’ social grooming, which—like most explorations of fine patterns—primarily elicits minute saccades (microsaccades). Leveraging on recent advances in gaze-contingent display control, we were able to systematically map the perisaccadic time course of sensitivity across the foveola. We show that contrast sensitivity is not uniform across this region and that both the extent and dynamics of saccadic suppression vary within the foveola. Suppression is stronger and faster in the most central portion, where sensitivity is generally higher and selectively rebounds at the onset of a new fixation. These results shed light on the modulations experienced by foveal vision during the saccade-fixation cycle and explain some of the benefits of microsaccades.


2020 ◽  
Vol 117 (20) ◽  
pp. 11178-11183
Author(s):  
Natalya Shelchkova ◽  
Martina Poletti

It is known that attention shifts prior to a saccade to start processing the saccade target before it lands in the foveola, the high-resolution region of the retina. Yet, once the target is foveated, microsaccades, tiny saccades maintaining the fixated object within the fovea, continue to occur. What is the link between these eye movements and attention? There is growing evidence that these eye movements are associated with covert shifts of attention in the visual periphery, when the attended stimuli are presented far from the center of gaze. Yet, microsaccades are primarily used to explore complex foveal stimuli and to optimize fine spatial vision in the foveola, suggesting that the influences of microsaccades on attention may predominantly impact vision at this scale. To address this question we tracked gaze position with high precision and briefly presented high-acuity stimuli at predefined foveal locations right before microsaccade execution. Our results show that visual discrimination changes prior to microsaccade onset. An enhancement occurs at the microsaccade target location. This modulation is highly selective and it is coupled with a drastic impairment at the opposite foveal location, just a few arcminutes away. This effect is strongest when stimuli are presented closer to the eye movement onset time. These findings reveal that the link between attention and microsaccades is deeper than previously thought, exerting its strongest effects within the foveola. As a result, during fixation, foveal vision is constantly being reshaped both in space and in time with the occurrence of microsaccades.


2017 ◽  
Vol 117 (2) ◽  
pp. 492-508 ◽  
Author(s):  
James E. Niemeyer ◽  
Michael A. Paradiso

Contrast sensitivity is fundamental to natural visual processing and an important tool for characterizing both visual function and clinical disorders. We simultaneously measured contrast sensitivity and neural contrast response functions and compared measurements in common laboratory conditions with naturalistic conditions. In typical experiments, a subject holds fixation and a stimulus is flashed on, whereas in natural vision, saccades bring stimuli into view. Motivated by our previous V1 findings, we tested the hypothesis that perceptual contrast sensitivity is lower in natural vision and that this effect is associated with corresponding changes in V1 activity. We found that contrast sensitivity and V1 activity are correlated and that the relationship is similar in laboratory and naturalistic paradigms. However, in the more natural situation, contrast sensitivity is reduced up to 25% compared with that in a standard fixation paradigm, particularly at lower spatial frequencies, and this effect correlates with significant reductions in V1 responses. Our data suggest that these reductions in natural vision result from fast adaptation on one fixation that lowers the response on a subsequent fixation. This is the first demonstration of rapid, natural-image adaptation that carries across saccades, a process that appears to constantly influence visual sensitivity in natural vision. NEW & NOTEWORTHY Visual sensitivity and activity in brain area V1 were studied in a paradigm that included saccadic eye movements and natural visual input. V1 responses and contrast sensitivity were significantly reduced compared with results in common laboratory paradigms. The parallel neural and perceptual effects of eye movements and stimulus complexity appear to be due to a form of rapid adaptation that carries across saccades.


Author(s):  
Saad Idrees ◽  
Matthias-Philipp Baumann ◽  
Maria M. Korympidou ◽  
Timm Schubert ◽  
Alexandra Kling ◽  
...  

AbstractVisual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find a novel retinal processing motif underlying retinal saccadic suppression, “dynamic reversal suppression”, which is triggered by sequential stimuli containing contrast reversals. This motif does not involve inhibition but relies on nonlinear transformation of the inherently slow responses of cone photoreceptors by downstream retinal pathways. Two further components of suppression are present in ON ganglion cells and originate in the cells’ receptive field surround, highlighting a novel disparity between ON and OFF ganglion cells. Our results are relevant for any sequential stimulation encountered frequently in naturalistic scenarios.


2018 ◽  
Vol 119 (6) ◽  
pp. 2059-2067 ◽  
Author(s):  
Chris Scholes ◽  
Paul V. McGraw ◽  
Neil W. Roach

During periods of steady fixation, we make small-amplitude ocular movements, termed microsaccades, at a rate of 1–2 every second. Early studies provided evidence that visual sensitivity is reduced during microsaccades—akin to the well-established suppression associated with larger saccades. However, the results of more recent work suggest that microsaccades may alter retinal input in a manner that enhances visual sensitivity to some stimuli. Here we parametrically varied the spatial frequency of a stimulus during a detection task and tracked contrast sensitivity as a function of time relative to microsaccades. Our data reveal two distinct modulations of sensitivity: suppression during the eye movement itself and facilitation after the eye has stopped moving. The magnitude of suppression and facilitation of visual sensitivity is related to the spatial content of the stimulus: suppression is greatest for low spatial frequencies, while sensitivity is enhanced most for stimuli of 1–2 cycles/°, spatial frequencies at which we are already most sensitive in the absence of eye movements. We present a model in which the tuning of suppression and facilitation is explained by delayed lateral inhibition between spatial frequency channels. Our data show that eye movements actively modulate visual sensitivity even during fixation: the detectability of images at different spatial scales can be increased or decreased depending on when the image occurs relative to a microsaccade. NEW & NOTEWORTHY Given the frequency with which we make microsaccades during periods of fixation, it is vital that we understand how they affect visual processing. We demonstrate two selective modulations of contrast sensitivity that are time-locked to the occurrence of a microsaccade: suppression of low spatial frequencies during each eye movement and enhancement of higher spatial frequencies after the eye has stopped moving. These complementary changes may arise naturally because of sluggish gain control between spatial channels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebekka Lencer ◽  
Inga Meyhöfer ◽  
Janina Triebsch ◽  
Karen Rolfes ◽  
Markus Lappe ◽  
...  

AbstractAbout 40% of schizophrenia patients report discrete visual disturbances which could occur if saccadic suppression, the decrease of visual sensitivity around saccade onset, is impaired. Two mechanisms contribute to saccadic suppression: efference copy processing and backwards masking. Both are reportedly altered in schizophrenia. However, saccadic suppression has not been investigated in schizophrenia. 17 schizophrenia patients and 18 healthy controls performed a saccadic suppression task using a Gabor stimulus with individually adjusted contrast, which was presented within an interval 300 ms around saccade onset. Visual disturbance scores were higher in patients than controls, but saccadic suppression strength and time course were similar in both groups with lower saccadic suppression rates being similarly related to smaller saccade amplitudes. Saccade amplitudes in the saccadic suppression task were reduced in patients, in contrast to unaltered amplitudes during a saccade control task. Notably, smaller saccade amplitudes were related to higher visual disturbances scores in patients. Saccadic suppression performance was unrelated to symptom expression and antipsychotic medication. Unaltered saccadic suppression in patients suggests sufficiently intact efference copy processing and backward masking as required for this task. Instead, visual disturbances in patients may be related to restricted saccadic amplitudes arising from cognitive load while completing a task.


2019 ◽  
Author(s):  
Saad Idrees ◽  
Matthias P. Baumann ◽  
Felix Franke ◽  
Thomas A. Münch ◽  
Ziad M. Hafed

AbstractVisual sensitivity, probed through perceptual detectability of very brief visual stimuli, is strongly impaired around the time of rapid eye movements. This robust perceptual phenomenon, called saccadic suppression, is frequently attributed to active suppressive signals that are directly derived from eye movement commands. Here we show instead that visual-only mechanisms, activated by saccade-induced image shifts, can account for all perceptual properties of saccadic suppression that we have investigated. Such mechanisms start at, but are not necessarily exclusive to, the very first stage of visual processing in the brain, the retina. Critically, neural suppression originating in the retina outlasts perceptual suppression around the time of saccades, suggesting that extra-retinal movement-related signals, rather than causing suppression, may instead act to shorten it. Our results demonstrate a far-reaching contribution of visual processing mechanisms to perceptual saccadic suppression, starting in the retina, without the need to invoke explicit motor-based suppression commands.


2015 ◽  
Vol 282 (1817) ◽  
pp. 20151568 ◽  
Author(s):  
Chris Scholes ◽  
Paul V. McGraw ◽  
Marcus Nyström ◽  
Neil W. Roach

During steady fixation, observers make small fixational saccades at a rate of around 1–2 per second. Presentation of a visual stimulus triggers a biphasic modulation in fixational saccade rate—an initial inhibition followed by a period of elevated rate and a subsequent return to baseline. Here we show that, during passive viewing, this rate signature is highly sensitive to small changes in stimulus contrast. By training a linear support vector machine to classify trials in which a stimulus is either present or absent, we directly compared the contrast sensitivity of fixational eye movements with individuals' psychophysical judgements. Classification accuracy closely matched psychophysical performance, and predicted individuals' threshold estimates with less bias and overall error than those obtained using specific features of the signature. Performance of the classifier was robust to changes in the training set (novel subjects and/or contrasts) and good prediction accuracy was obtained with a practicable number of trials. Our results indicate a tight coupling between the sensitivity of visual perceptual judgements and fixational eye control mechanisms. This raises the possibility that fixational saccades could provide a novel and objective means of estimating visual contrast sensitivity without the need for observers to make any explicit judgement.


2019 ◽  
Vol 122 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Jing Chen ◽  
Matteo Valsecchi ◽  
Karl R. Gegenfurtner

Visual sensitivity is severely impaired during the execution of saccadic eye movements. This phenomenon has been extensively characterized in human psychophysics and nonhuman primate single-neuron studies, but a physiological characterization in humans is less established. Here, we used a method based on steady-state visually evoked potential (SSVEP), an oscillatory brain response to periodic visual stimulation, to examine how saccades affect visual sensitivity. Observers made horizontal saccades back and forth, while horizontal black-and-white gratings flickered at 5–30 Hz in the background. We analyzed EEG epochs with a length of 0.3 s either centered at saccade onset (saccade epochs) or centered at fixations half a second before the saccade (fixation epochs). Compared with fixation epochs, saccade epochs showed a broadband power increase, which most likely resulted from saccade-related EEG activity. The execution of saccades, however, led to an average reduction of 57% in the SSVEP amplitude at the stimulation frequency. This result provides additional evidence for an active saccadic suppression in the early visual cortex in humans. Compared with previous functional MRI and EEG studies, an advantage of this approach lies in its capability to trace the temporal dynamics of neural activity throughout the time course of a saccade. In contrast to previous electrophysiological studies in nonhuman primates, we did not find any evidence for postsaccadic enhancement, even though simulation results show that our method would have been able to detect it. We conclude that SSVEP is a useful technique to investigate the neural correlates of visual perception during saccadic eye movements in humans. NEW & NOTEWORTHY We make fast ballistic saccadic eye movements a few times every second. At the time of saccades, visual sensitivity is severely impaired. The present study uses steady-state visually evoked potentials to reveal a neural correlate of the fine temporal dynamics of these modulations at the time of saccades in humans. We observed a strong reduction (57%) of visually driven neural activity associated with saccades but did not find any evidence for postsaccadic enhancement.


2016 ◽  
Vol 116 (6) ◽  
pp. 2882-2891 ◽  
Author(s):  
Rebecca M. Krock ◽  
Tirin Moore

Primate vision is continuously disrupted by saccadic eye movements, and yet this disruption goes unperceived. One mechanism thought to reduce perception of this self-generated movement is saccadic suppression, a global loss of visual sensitivity just before, during, and after saccadic eye movements. The frontal eye field (FEF) is a candidate source of neural correlates of saccadic suppression previously observed in visual cortex, because it contributes to the generation of visually guided saccades and modulates visual cortical responses. However, whether the FEF exhibits a perisaccadic reduction in visual sensitivity that could be transmitted to visual cortex is unknown. To determine whether the FEF exhibits a signature of saccadic suppression, we recorded the visual responses of FEF neurons to brief, full-field visual probe stimuli presented during fixation and before onset of saccades directed away from the receptive field in rhesus macaques ( Macaca mulatta). We measured visual sensitivity during both epochs and found that it declines before saccade onset. Visual sensitivity was significantly reduced in visual but not visuomotor neurons. This reduced sensitivity was also present in visual neurons with no movement-related modulation during visually guided saccades and thus occurred independently from movement-related activity. Across the population of visual neurons, sensitivity began declining ∼80 ms before saccade onset. We also observed a similar presaccadic reduction in sensitivity to isoluminant, chromatic stimuli. Our results demonstrate that the signaling of visual information by FEF neurons is reduced during saccade preparation, and thus these neurons exhibit a signature of saccadic suppression.


Sign in / Sign up

Export Citation Format

Share Document