scholarly journals Territory-level temperature influences settlement decisions, breeding phenology and productivity in three forest passerine birds

2021 ◽  
Author(s):  
Jack D Shutt ◽  
Sophie C Bell ◽  
Fraser Bell ◽  
Joan Castello ◽  
Myriam El Harouchi ◽  
...  

AbstractTemperature is a key determinant of breeding phenology in temperate zone birds, with increasing spring temperature across years or large geographic gradients known to advance timing of breeding. It is less well understood how localised, territory-scale temperature variations effect territory occupation, breeding phenology and productivity, primarily due to a lack of fine-scale temperature data.We examine the influence of temperature at the territory-scale, and its interaction with mean annual temperature, on territory selection and breeding outcomes of three co-occurring forest passerine bird species; two long-distance migrants (pied flycatcher Ficedula hypoleuca and wood warbler Phylloscopus sibilatrix) and one resident (blue tit Cyanistes caeruleus); all species dependent on seasonal invertebrate food for reproductive success.Spring temperature was recorded at intersections of a 150m2 grid encompassing 417 ha of forest in South-West England 2015-18, with temperature across the study area interpolated from this point data. Breeding phenology and productivity from 672 nests across the three species was quantified, and general linear models used to examine the influence of territory temperature on breeding phenology and productivity.All three species exhibited significant trends in reproductive traits associated with territory-scale temperature. Pied flycatchers settled in cooler territories first, where they raised more fledglings. Blue tits laid larger clutches in warmer territories in warm years and always laid earlier at warmer territories irrespective of annual mean temperature. Contrastingly, pied flycatcher and wood warbler breeding phenology was earlier at warmer territories in cool years and cooler territories in warm years, with wood warbler clutch size responding similarly to this interaction. Greater previous breeding experience and increased territory quality also predicted earlier breeding phenology and higher productivity for pied flycatchers.Our results show that local-scale spatial variation in temperature is associated with spatial variation in territory occupancy, breeding phenology and productivity in forest passerines. We suggest that the two migrant species may be best synchronised with their prey requirements in cooler years at a local population level while resident blue tits match local phenology at lower trophic levels across all years, potentially advantageous under warmer predicted climate change scenarios.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pianpian Wu ◽  
Martin J. Kainz ◽  
Fernando Valdés ◽  
Siwen Zheng ◽  
Katharina Winter ◽  
...  

AbstractClimate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.


2018 ◽  
Vol 18 (2) ◽  
Author(s):  
Lorhaine Santos-Silva ◽  
Tamaris Gimenez Pinheiro ◽  
Amazonas Chagas-Jr ◽  
Marinêz Isaac Marques ◽  
Leandro Dênis Battirola

Abstract: Myriapods constitute important edaphic macrofauna taxa which dwell in different trophic levels and influence the dynamics of these environments. This study evaluated the variation in composition, richness and abundance of edaphic myriapod assemblages as a function of the distribution and structure of flooded and non-flooded habitats (spatial variation) and hydrological seasonality (temporal variation) in a floodplain of the northern Pantanal region of Mato Grosso, Brazil. Sampling was carried out in three areas of the Poconé Pantanal, along an altitudinal and inundation gradient consisting of inundated and non-inundated habitats and different vegetation formations. Three quadrats (10 x 10 m) were delimited within each habitat type, where sampling was performed using pitfall traps and mini-Winkler extractors during the dry, rising water, high water and receding water periods of two hydrological cycles within the Pantanal (2010/2011 and 2011/2012). A total of 549 millipedes were collected, consisting of 407 Diplopoda and 142 Chilopoda distributed in six orders, 12 families and 20 species. The assemblages composition varied throughout the seasonal periods, indicating that the rising water and dry periods differed from the high water and receding water periods. In addition to the variation between seasonal periods, myriapod richness and abundance also varied in relation to areas consisting of different vegetation formations. Thus, it can be concluded that the hydrological seasonality associated with the inundation gradient and different vegetation types were determinant in the heterogeneous spatial and temporal distribution of myriapod assemblages, validating that the conservation of these invertebrates in the Pantanal is directly linked to the preservation of vegetation, and consequently, ecosystem integrity.


2020 ◽  
Author(s):  
Jan Niklas Macher ◽  
Berry B. van der Hoorn ◽  
Katja T. C. A. Peijnenburg ◽  
Lodewijk van Walraven ◽  
Willem Renema

AbstractZooplankton are key players in marine ecosystems, linking primary production to higher trophic levels. The high abundance and high taxonomic diversity renders zooplankton ideal for biodiversity monitoring. However, taxonomic identification of the zooplankton assemblage is challenging due to its high diversity, subtle morphological differences and the presence of many meroplanktonic species, especially in coastal seas. Molecular techniques such as metabarcoding can help with rapid processing and identification of taxa in complex samples, and are therefore promising tools for identifying zooplankton communities. In this study, we applied metabarcoding of the mitochondrial cytochrome c oxidase I gene to zooplankton samples collected along a latitudinal transect in the North Sea, a shelf sea of the Atlantic Ocean. Northern regions of the North Sea are influenced by inflow of oceanic Atlantic waters, whereas the southern parts are characterised by more coastal waters. Our metabarcoding results indicated strong differences in zooplankton community composition between northern and southern areas of the North Sea, particularly in the classes Copepoda, Actinopterygii (ray-finned fishes) and Polychaeta. We compared these results to the known distributions of species reported in previous studies, and by comparing the abundance of copepods to data obtained from the Continuous Plankton Recorder (CPR). We found that our metabarcoding results are mostly congruent with the reported distribution and abundance patterns of zooplankton species in the North Sea. Our results highlight the power of metabarcoding to rapidly assess complex zooplankton samples, and we suggest that the technique could be used in future monitoring campaigns and biodiversity assessments.HighlightsZooplankton communities are different in northern and southern areas of the North SeaMetabarcoding results are consistent with known species distributions and abundanceMetabarcoding allows for fast identification of meroplanktonic species


2020 ◽  
Author(s):  
Thel Lucie ◽  
Chamaillé-Jammes Simon ◽  
Keurinck Léa ◽  
Catala Maxime ◽  
Packer Craig ◽  
...  

AbstractEcologists increasingly rely on camera trap data to estimate a wide range of biological parameters such as occupancy, population abundance or activity patterns. Because of the huge amount of data collected, the assistance of non-scientists is often sought after, but an assessment of the data quality is a prerequisite to their use.We tested whether citizen science data from one of the largest citizen science projects - Snapshot Serengeti - could be used to study breeding phenology, an important life-history trait. In particular, we tested whether the presence of juveniles (less than one or 12 months old) of three ungulate species in the Serengeti: topi Damaliscus jimela, kongoni Alcelaphus buselaphus and Grant’s gazelle Nanger granti could be reliably detected by the “naive” volunteers vs. trained observers. We expected a positive correlation between the proportion of volunteers identifying juveniles and their effective presence within photographs, assessed by the trained observers.We first checked the agreement between the trained observers for age classes and species and found a good agreement between them (Fleiss’ κ > 0.61 for juveniles of less than one and 12 month(s) old), suggesting that morphological criteria can be used successfully to determine age. The relationship between the proportion of volunteers detecting juveniles less than a month old and their actual presence plateaued at 0.45 for Grant’s gazelle and reached 0.70 for topi and 0.56 for kongoni. The same relationships were however much stronger for juveniles younger than 12 months, to the point that their presence was perfectly detected by volunteers for topi and kongoni.Volunteers’ classification allows a rough, moderately accurate, but quick, sorting of photograph sequences with/without juveniles. Obtaining accurate data however appears more difficult. We discuss the limitations of using citizen science camera traps data to study breeding phenology, and the options to improve the detection of juveniles, such as the addition of aging criteria on the online citizen science platforms, or the use of machine learning.


2013 ◽  
Vol 9 (6) ◽  
pp. 20130669 ◽  
Author(s):  
Nancy Ockendon ◽  
Dave Leech ◽  
James W. Pearce-Higgins

Long-distance migrants may be particularly vulnerable to climate change on both wintering and breeding grounds. However, the relative importance of climatic variables at different stages of the annual cycle is poorly understood, even in well-studied Palaearctic migrant species. Using a national dataset spanning 46 years, we investigate the impact of wintering ground precipitation and breeding ground temperature on breeding phenology and clutch size of 19 UK migrants. Although both spring temperature and arid zone precipitation were significantly correlated with laying date, the former accounted for 3.5 times more inter-annual variation. Neither climate variable strongly affected clutch size. Thus, although carry-over effects had some impact, they were weaker drivers of reproductive traits than conditions on the breeding grounds.


The Holocene ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1073-1080 ◽  
Author(s):  
P.L. Ascough ◽  
G.T. Cook ◽  
H. Hastie ◽  
E. Dunbar ◽  
M.J. Church ◽  
...  

A freshwater radiocarbon (14C) reservoir effect (FRE) is a 14C age offset between the atmospheric and freshwater carbon reservoirs. FREs can be on the order of 10 000 14C yr in extreme examples and are a crucial consideration for 14C dating of palaeoenvironmental and archaeological samples. Correction for a FRE may be possible, provided the FRE and the proportion of FRE-affected carbon within a sample can be accurately quantified. However, although such correction is desirable for affected samples, it is essential that such correction is accurate in order to produce useful chronological information. Accuracy of FRE correction can be limited by spatial variation in FRE within a freshwater system, but despite this there is currently a paucity of information to identify and quantify such variability within affected systems. Here we present results of a study that investigates the effects of spatial FRE variation upon dating accuracy within the freshwater system of Lake Mývatn, northern Iceland. A substantial FRE (>10 000 14C yr) has previously been identified in archaeological and modern samples from the region, which shows the potential for considerable spatial variability. The study also assesses the use of δ13C and δ15N in age correction of affected samples. The results show that benthic detritus and organisms at primary trophic levels from locations within the lake are affected by a FRE of at least 3500 14C yr, with clear spatial variation resulting in 14C age differences of up to 7670 14C yr between samples. There is a broad correlation between stable isotope values and FRE within the data set. However, large associated uncertainties currently preclude highly accurate and precise stable isotope-based quantification of the proportion of FRE-affected carbon within archaeological and palaeoenvironmental samples from Mývatn and the surrounding region.


2018 ◽  
Author(s):  
Kanehiro Kitayama ◽  
Masayuki Ushio ◽  
Shin-ichiro Aiba

ABSTRACTIntra-annual periodicity of canopy photosynthetic activity and leaf development has been documented in seasonal and weakly-seasonal tropical forests in the Amazon and elsewhere. However, vegetative periodicity such as leaf flush and fall in apparently “aseasonal” equatorial tropical forests has not been well documented. Moreover, causal drivers of the vegetative periodicity in those forests have not been identified largely because of the difficulty in performing manipulative experiments targeting whole forest ecosystem dynamics.Here we show a distinct annual seasonality in canopy dynamics using a Fourier analysis with a statistical significance test on the long-term, fortnightly monitored dataset of leaf litterfall in nine evergreen tropical rain forests on Mount Kinabalu, Borneo. Statistically significant annual periodicity occurs across altitudes and soil types in all years irrespective of the year-to-year climatic variability, suggesting that fluctuations in regional climate rather than local micro-climatic, edaphic and/or biotic conditions cause the precise 1-year periodicity.We examine climatic factors that have causative effects on the distinct 1-year periodicity using the spectrum convergent cross mapping that we developed in the present study to distinguish causal relationships from seasonality-driven synchronization. According to the analysis, we find that mean daily air temperature is most strongly, causatively related to the 1-year periodicity of leaf litterfall. However, knowledge on ecophysiolocial and molecular mechanisms underlying temperature-control of tropical tree growth is limited and further studies are required to understand the detailed mechanisms.(Synthesis) We suggest that intra-annual temperature changes in association with the movement of the intertropical convergence zone cause the distinct annual vegetative periodicity. Because vegetative periodicity can be transmitted to the dynamics of higher trophic levels through a trophic cascade, interactions between vegetative periodicity and daily air temperature, not rainfall, would more strongly cause changes in the dynamics of equatorial tropical rain forests. Our results show that clear vegetative periodicity (i.e., annual seasonality) can be found in equatorial tropical rain forests under diverse local environments, and that air temperature is a more important factor than the other climate variables in the climate-forest ecosystem interactions.


2021 ◽  
Author(s):  
◽  
Annie Graham

<p>Coastal habitats are susceptible to severe contamination due to their exposure to both marine and terrestrial inputs, many of which contain toxic heavy metals. Trace metals in the marine environment can have severe impacts on the health of coastal ecosystems, as even those with essential functions can be toxic at high concentrations, and non-essential elements can cause impairment of biological functions even at low levels.  It is important to understand the chemistry of New Zealand’s marine environment, in order to successfully monitor any changes to the chemical profile of the environment from anthropogenic pollutants. Biological indicators are a useful tool for monitoring ecosystem health, and the impact of human activity on the environment. Crustaceans fulfil all the criteria of being good environmental indicators, as well as having a range of feeding strategies, and being present at multiple trophic levels. The aim of this research was to 1) investigate spatial variation and the effect of urbanisation in trace metal concentration in two native decapod species, Heterozius rotundifrons and Petrolisthes elongatus, which co-occur but feed at different trophic levels; and 2) examine how essential and non-essential trace metals are accumulated into different body tissues of the decapod Jasus edwardsii, a significant cultural and fishery species.  To assess spatial variation and trophic level differences between decapods, baseline data of the concentrations of thirty trace metals was collected and analysed from both species at three sites in the Wellington region. Little variation was found between the sites, despite their differences in proximity to urban development, but significant differences were found between species, with the consumer H. rotundifrons having higher concentrations of most trace metals than the filter feeder P. elongatus.  To assess trace metal accumulation into tissues of J. edwardsii, an experiment was run exposing juveniles to water doped with an elevated copper and neodymium treatment. Copper was preferentially accumulated into the organ tissue, as was expected for an essential element. Neodymium was accumulated differentially into organ and exoskeleton tissue depending on the treatment, with specimens in the elevated treatment taking it up into the shell rather than the organs. A second experiment was also run to investigate whether moulted exoskeletons would passively absorb copper from their environment, which was shown to be the case.  This research aids in understanding the importance of multiple species monitoring, as trace element accumulation was shown to be highly variable depending on species and metals, and contributes valuable geochemical data on native New Zealand species, which have been little studied in this context.</p>


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Mirosława Bańbura ◽  
Michał Glądalski ◽  
Adam Kaliński ◽  
Marcin Markowski ◽  
Joanna Skwarska ◽  
...  

2016 ◽  
Vol 157 (2) ◽  
pp. 591-598 ◽  
Author(s):  
Michał Glądalski ◽  
Mirosława Bańbura ◽  
Adam Kaliński ◽  
Marcin Markowski ◽  
Joanna Skwarska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document