scholarly journals Inhibiting glycogen synthase kinase 3 suppresses TDP-43-mediated neurotoxicity in a caspase-dependant manner

2021 ◽  
Author(s):  
Matthew A. White ◽  
Francesca Massenzio ◽  
Xingli Li ◽  
Michael P. Coleman ◽  
Sami J. Barmada ◽  
...  

AbstractAmyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) is a progressive and ultimately fatal disease spectrum characterised by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Current disease modifying drugs have modest effects and novel therapies are sorely needed. We previously showed that deletion of glycogen synthase kinase-3 (GSK3) suppresses TDP-43-mediated motor neuron degeneration in Drosophila. Here, we investigated the potential of GSK3 inhibition to ameliorate TDP43-mediated toxicity in mammalian neurons. Expression of TDP-43 was found to both activate GSK3 and promote caspase mediated cleavage of TDP-43. Inhibition of GSK3 reduced the abundance of full-length and cleaved TDP-43 in rodent neurons expressing wild-type or disease-associated mutant TDP-43 and also ameliorated neurotoxicity. Our results suggest that TDP-43 turnover is promoted by GSK3 inhibition in a caspase-dependent manner, and that targeting GSK3 activity could have therapeutic value.

1999 ◽  
Vol 19 (11) ◽  
pp. 7420-7427 ◽  
Author(s):  
Armelle A. Troussard ◽  
Clara Tan ◽  
T. Nathan Yoganathan ◽  
Shoukat Dedhar

ABSTRACT Integrin-mediated interactions of cells with components of the extracellular matrix regulate cell survival, cell proliferation, cell differentiation, and cell migration. Some of these physiological responses are regulated via activation of transcription factors such as activator protein 1 (AP-1). Integrin-linked kinase (ILK) is an ankyrin repeat containing serine-threonine protein kinase whose activity is rapidly and transiently stimulated by cell-fibronectin interactions as well as by insulin stimulation. ILK activates protein kinase B and inhibits the glycogen synthase kinase 3 (GSK-3) activity in a phosphatidylinositol-3-kinase (PI 3-kinase)-dependent manner. We now show that cell adhesion to fibronectin results in a rapid and transient stimulation of AP-1 activity. At the same time, the kinase activity of ILK is stimulated whereas that of GSK-3 is inhibited. This fibronectin-dependent activation of AP-1 activity is inhibited in a dose-dependent manner if the cells are transfected with wild-type GSK-3, and also by inhibitors of PI 3-kinase. Stable or transient overexpression of ILK results in a stimulation of AP-1 activity which is inhibited by cotransfection with wild-type GSK-3 and kinase-deficient ILK. Transient transfection of ILK in HEK-293 cells stimulates complex formation between an AP-1 consensus oligonucleotide and nuclear proteins containing c-jun. The formation of this complex is inhibited by cotransfection with active GSK-3 or kinase-deficient ILK, suggesting that ILK may regulate AP-1 activation by inhibiting GSK-3, which has previously been shown to be a negative regulator of AP-1. In the presence of serum, ILK has no effect on the phosphorylation of Ser-73 in the N-terminal transactivation domain of c-jun. These results demonstrate a novel signaling pathway for the adhesion-mediated stimulation of AP-1 transcriptional activity involving ILK and GSK-3 and the subsequent regulation of the c-jun–DNA interaction.


2004 ◽  
Vol 3 (5) ◽  
pp. 1307-1319 ◽  
Author(s):  
Nedra F. Wilson ◽  
Paul A. Lefebvre

ABSTRACT Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.


2020 ◽  
Vol 10 (10) ◽  
pp. 675
Author(s):  
Hyun-Jun Choi ◽  
Sun Joo Cha ◽  
Jang-Won Lee ◽  
Hyung-Jun Kim ◽  
Kiyoung Kim

Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease characterized by progressive motor neuron degeneration. Although several studies on genes involved in ALS have substantially expanded and improved our understanding of ALS pathogenesis, the exact molecular mechanisms underlying this disease remain poorly understood. Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine-protein kinase that plays a critical role in the regulation of various cellular signaling pathways. Dysregulation of GSK3β activity in neuronal cells has been implicated in the pathogenesis of neurodegenerative diseases. Previous research indicates that GSK3β inactivation plays a neuroprotective role in ALS pathogenesis. GSK3β activity shows an increase in various ALS models and patients. Furthermore, GSK3β inhibition can suppress the defective phenotypes caused by SOD, TDP-43, and FUS expression in various models. This review focuses on the most recent studies related to the therapeutic effect of GSK3β in ALS and provides an overview of how the dysfunction of GSK3β activity contributes to ALS pathogenesis.


2006 ◽  
Vol 27 (11) ◽  
pp. 4006-4017 ◽  
Author(s):  
Qingqing Ding ◽  
Xianghuo He ◽  
Jung-Mao Hsu ◽  
Weiya Xia ◽  
Chun-Te Chen ◽  
...  

ABSTRACT Apoptosis is critical for embryonic development, tissue homeostasis, and tumorigenesis and is determined largely by the Bcl-2 family of antiapoptotic and prosurvival regulators. Here, we report that glycogen synthase kinase 3 (GSK-3) was required for Mcl-1 degradation, and we identified a novel mechanism for proteasome-mediated Mcl-1 turnover in which GSK-3β associates with and phosphorylates Mcl-1 at one consensus motif (155 STDG159 SLPS163 T; phosphorylation sites are in italics), which will lead to the association of Mcl-1 with the E3 ligase β-TrCP, and β-TrCP then facilitates the ubiquitination and degradation of phosphorylated Mcl-1. A variant of Mcl-1 (Mcl-1-3A), which abolishes the phosphorylations by GSK-3β and then cannot be ubiquitinated by β-TrCP, is much more stable than wild-type Mcl-1 and able to block the proapoptotic function of GSK-3β and enhance chemoresistance. Our results indicate that the turnover of Mcl-1 by β-TrCP is an essential mechanism for GSK-3β-induced apoptosis and contributes to GSK-3β-mediated tumor suppression and chemosensitization.


2005 ◽  
Vol 25 (16) ◽  
pp. 7170-7180 ◽  
Author(s):  
Roman Kulikov ◽  
Karen A. Boehme ◽  
Christine Blattner

ABSTRACT The Mdm2 oncoprotein regulates abundance and activity of the p53 tumor suppressor protein. For efficient degradation of p53, Mdm2 needs to be phosphorylated at several contiguous residues within the central conserved domain. We show that glycogen synthase kinase 3 (GSK-3) phosphorylated the Mdm2 protein in vitro and in vivo in the central domain. Inhibition of GSK-3 rescued p53 from degradation in an Mdm2-dependent manner while its association with Mdm2 was not affected. Likewise, inhibition of GSK-3 did not alter localization of p53 and Mdm2 or the interaction of Mdm2 and MdmX. Ionizing radiation, which leads to p53 accumulation, directed phosphorylation of GSK-3 at serine 9, which preceded and overlapped with the increase in p53 levels. Moreover, expression of a GSK-3 mutant where serine 9 was replaced with an alanine reduced the accumulation of p53 and induction of its target p21WAF-1. We therefore conclude that inhibition of GSK-3 contributes to hypophosphorylation of Mdm2 in response to ionizing rays, and in consequence to p53 stabilization.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ana Martinez ◽  
Carmen Gil ◽  
Daniel I. Perez

Glycogen synthase kinase 3 (GSK-3), a proline/serine protein kinase ubiquitously expressed and involved in many cellular signaling pathways, plays a key role in the pathogenesis of Alzheimer's disease (AD) being probably the link betweenβ-amyloid and tau pathology. A great effort has recently been done in the discovery and development of different new molecules, of synthetic and natural origin, able to inhibit this enzyme, and several kinetics mechanisms of binding have been described. The small molecule called tideglusib belonging to the thiadiazolidindione family is currently on phase IIb clinical trials for AD. The potential risks and benefits of this new kind of disease modifying drugs for the future therapy of AD are discussed in this paper.


2021 ◽  
Author(s):  
Elena Kisseleff ◽  
Robin Vigouroux ◽  
Catherine Hottin ◽  
Sopie Lourdel ◽  
Parth Shah ◽  
...  

Glycogen Synthase Kinase 3 (GSK) proteins (GSK3α and GSK3β) are key mediators of signaling pathways, with crucial roles in coordinating fundamental biological processes during neural development. Here we show that the complete loss of GSK3 signaling in mouse retinal progenitors leads to microphthalmia with broad morphological defects. Both proliferation of retinal progenitors and neuronal differentiation are impaired and result in enhanced cell death. A single wild-type allele of either GSK3α or GSK3β is able to rescue these phenotypes. In this genetic context, all cell types are present with a functional retina. However, we unexpectedly detect a large number of cells in the inner nuclear layer expressing retinal ganglion cell (RGC)-specific markers (called displaced RGCs, dRGCs) when at least one allele of Gsk3α is expressed. Excess dRGCs lead to increased number of axons projecting into the ipsilateral medial terminal nucleus, an area of the brain belonging to the non-image-forming visual circuit and poorly targeted by RGCs in wild-type retina. Transcriptome analysis and optomotor response assay suggest that at least a subset of dRGCs in Gsk3 mutant mice are direction-selective RGCs. Our study thus uncovers a unique role of GSK3 in controlling the genesis of dRGCs, a rare and poorly characterized retinal cell type.


Sign in / Sign up

Export Citation Format

Share Document