scholarly journals Conserved Cdk inhibitors show unique structural responses to tyrosine phosphorylation

2021 ◽  
Author(s):  
Jacob B. Swadling ◽  
Tobias Warnecke ◽  
Kyle L. Morris ◽  
Alexis R. Barr

AbstractBalanced proliferation-quiescence decisions are vital during normal development and in tissue homeostasis and their dysregulation underlies tumorigenesis. Entry into proliferative cycles is driven by Cyclin/Cyclin-dependent kinases (Cdks). Conserved Cdk inhibitors (CKIs), p21Cip1/Waf1, p27Kip1 and p57Kip2, bind to Cyclin/Cdks and inhibit Cdk activity. p27 tyrosine phosphorylation, in response to mitogenic signalling, promotes activation of CyclinD/Cdk4 and CyclinA/Cdk2. Tyrosine phosphorylation is conserved in p21 and p57, although the number of sites differs. We use molecular dynamics simulations to compare the structural changes in Cyclin/Cdk/CKI trimers induced by single and multiple tyrosine phosphorylation in CKIs and their impact on CyclinD/Cdk4 and CyclinA/Cdk2 activity. Despite shared structural features, CKI binding induces distinct structural responses in Cyclin/Cdks and the predicted effects of CKI tyrosine phosphorylation on Cdk activity are not conserved across CKIs. Our analyses suggest how CKIs may have evolved to be sensitive to different inputs to give context-dependent control of Cdk activity.

2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1602
Author(s):  
Anna Elizarova ◽  
Alexey Sokolov ◽  
Valeria Kostevich ◽  
Ekaterina Kisseleva ◽  
Evgeny Zelenskiy ◽  
...  

As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.


2008 ◽  
Vol 183 (5) ◽  
pp. 865-879 ◽  
Author(s):  
Christian Frantz ◽  
Gabriela Barreiro ◽  
Laura Dominguez ◽  
Xiaoming Chen ◽  
Robert Eddy ◽  
...  

Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H+ efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.


2005 ◽  
Vol 502 ◽  
pp. 51-56 ◽  
Author(s):  
Sakir Erkoc

The structural and electronic properties of isolated neutral ZnmCdn clusters for m+n £ 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissosiation channels of the clusters considered have been obtained. An empirical many-body potential energy function (PEF), which comprices two- and three-body atomic interactions, has been developed to investigate the structural features and energetics of ZnmCdn (m+n=3,4) microclusters. The most stable structures were found to be triangular for the three-atom clusters and tetrahedral for the four-atom clusters. On the other hand, the structural features and energetics of Znn-mCdm (n=7,8) microclusters, and Zn50, Cd50, Zn25Cd25, Zn12Cd38, and Zn38Cd12 nanoparticles have been investigated by performing molecular-dynamics computer simulations using the developed PEF. The most stable structures were found to be compact and three-dimensional for all elemental and mixed clusters. An interesting structural feature of the mixed clusters is that Zn and Cd atoms do not mix in mixed clusters, they come together almost without mixing. Surface and bulk properties of Zn, Cd, and ZnCd systems have been investigated too by performing molecular-dynamics simulations using the developed PEF. Surface reconstruction and multilayer relaxation on clean surfaces, adatom on surface, substitutional atom on surface and bulk materials, and vacancy on surface and bulk materials have been studied extensively.


F1000Research ◽  
2016 ◽  
Vol 3 ◽  
pp. 116 ◽  
Author(s):  
Giuseppe Musumeci ◽  
Ali Mobasheri ◽  
Francesca Maria Trovato ◽  
Marta Anna Szychlinska ◽  
Rosa Imbesi ◽  
...  

Osteoarthritis (OA) is a degenerative process involving the progressive loss of articular cartilage, synovial inflammation and structural changes in subchondral bone that lead to loss of synovial joint structural features and functionality of articular cartilage. OA represents one of the most common causes of physical disability in the world. Different OA treatments are usually considered in relation to the stage of the disease. In the early stages, it is possible to recommend physical activity programs that can maintain joint health and keep the patient mobile, as recommended by OA Research Society International (OARSI) and European League Against Rheumatism (EULAR). In the most severe and advanced cases of OA, surgical intervention is necessary. After, in early postoperative stages, it is essential to include a rehabilitation exercise program in order to restore the full function of the involved joint. Physical therapy is crucial for the success of any surgical procedure and can promote recovery of muscle strength, range of motion, coordinated walking, proprioception and mitigate joint pain. Furthermore, after discharge from the hospital, patients should continue the rehabilitation exercise program at home associated to an appropriate diet. In this review, we analyze manuscripts from the most recent literature and provide a balanced and comprehensive overview of the latest developments on the effect of physical exercise on postoperative rehabilitation in OA. The literature search was conducted using PubMed, Scopus, Web of Science and Google Scholar, using the keywords ‘osteoarthritis’, ‘rehabilitation’, ‘exercise’ and ‘nutrition’. The available data suggest that physical exercise is an effective, economical and accessible to everyone practice, and it is one of the most important components of postoperative rehabilitation for OA.


10.29007/6kp3 ◽  
2020 ◽  
Author(s):  
Renji Mukuno ◽  
Manabu Ishimaru

The structural changes of amorphous silicon (a-Si) under compressive pressure were examined by molecular-dynamics simulations using the Tersoff interatomic potential. a-Si prepared by melt-quenching methods was pressurized up to 30 GPa under different temperatures (300K and 500K). The density of a-Si increased from 2.26 to 3.24 g/cm3 with pressure, suggesting the occurrence of the low-density to high-density amorphous phase transformation. This phase transformation occurred at the lower pressure with increasing the temperature because the activation barrier for amorphous-to-amorphous phase transformation could be exceeded by thermal energy. The coordination number increased with pressure and time, and it was saturated at different values depending on the pressure. This suggested the existence of different metastable atomic configurations in a-Si. Atomic pair-distribution functions and bond-angle distribution functions suggested that the short-range ordered structure of high-density a-Si is similar to the structure of the high-pressure phase of crystalline Si (β-tin and Imma structures).


2021 ◽  
Author(s):  
Tao Jiang ◽  
Antonio MONARI ◽  
Elise Dumont ◽  
Emmanuelle Bignon

The 8-oxo-7,8-dihydroguanine, referred to as 8-oxoG, is a highly mutagenic DNA lesion that can provoke the appearance of mismatches if it escapes the DNA Damage Response. The specific recognition of its structural signature by the hOGG1 glycosylase is the first step along the Base Excision Repair pathway, that ensures the integrity of the genome by preventing the emergence of mutations. 8-oxoG formation, structural features and repair have been the matter of extensive research and more recently this active field of research expended to the more complicated case of 8-oxoG within clustered lesions. Indeed, the presence of a second lesion within 1 or 2 helix turns can dramatically impact the repair yields of 8-oxoG by glycosylases. In this work, we use mu-range molecular dynamics simulations and machine learning-based post-analysis to explore the molecular mechanisms associated with the recognition of 8-oxoG by hOGG1 when embedded in a multiple lesions site with a mismatch in 5' or 3'. We delineate the stiffening of the DNA-protein interactions upon the presence of the mismatches, and rationalize the much lower repair yields reported with a 5' mismatch by describing the perturbation of 8-oxoG structural features upon addition of an adjacent lesion.


Sign in / Sign up

Export Citation Format

Share Document