scholarly journals A like-for-like comparison of lightweight-mapping pipelines for single-cell RNA-seq data pre-processing

2021 ◽  
Author(s):  
Mohsen Zakeri ◽  
Avi Srivastava ◽  
Hirak Sarkar ◽  
Rob Patro

AbstractRecently, Booeshaghi and Pachter (1) published a benchmark comparing the kallisto-bustools pipeline (2) for single-cell data pre-processing to the alevin-fry pipeline (3). Their benchmarking adopted drastically dissimilar configurations for these two tools, and overlooked the time- and space-frugal configurations of alevin-fry previously benchmarked by Sarkar et al. (3). In this manuscript, we provide a small set of modifications to the benchmarking scripts of Booeshaghi and Pachter that are necessary to perform a like-for-like comparison between kallisto-bustools and alevin-fry. We also address some misuses of the alevin-fry commands and include important data on the exact reference transcriptomes used for processing1. Using the same benchmarking scripts of Booeshaghi and Pachter (1), we demonstrate that, when configured to match the computational com-plexity of kallisto-bustools as closely as possible, alevin-fry processes data faster (~2.08 times as fast on average) and uses less peak memory (~ 0.34 times as much on average) compared to kallisto-bustools, while producing results that are similar when assessed in the manner done by Booeshaghi and Pachter (1). This is a notable inversion of the performance characteristics presented in the previous benchmark.

2020 ◽  
Author(s):  
Julia Eve Olivieri ◽  
Roozbeh Dehghannasiri ◽  
Julia Salzman

AbstractTo date, the field of single-cell genomics has viewed robust splicing analysis as completely out of reach in droplet-based platforms, preventing biological discovery of single-cell regulated splicing. Here, we introduce a novel, robust, and computationally efficient statistical method, the Splicing Z Score (SZS), to detect differential alternative splicing in single cell RNA-Seq technologies including 10x Chromium. We applied the SZS to primary human cells to discover new regulated, cell type-specific splicing patterns. Illustrating the power of the SZS method, splicing of a small set of genes has high predictive power for tissue compartment in the human lung, and the SZS identifies un-annotated, conserved splicing regulation in the human spermatogenesis. The SZS is a method that can rapidly identify regulated splicing events from single cell data and prioritize genes predicted to have functionally significant splicing programs.


2019 ◽  
Author(s):  
Anna Danese ◽  
Maria L. Richter ◽  
David S. Fischer ◽  
Fabian J. Theis ◽  
Maria Colomé-Tatché

ABSTRACTEpigenetic single-cell measurements reveal a layer of regulatory information not accessible to single-cell transcriptomics, however single-cell-omics analysis tools mainly focus on gene expression data. To address this issue, we present epiScanpy, a computational framework for the analysis of single-cell DNA methylation and single-cell ATAC-seq data. EpiScanpy makes the many existing RNA-seq workflows from scanpy available to large-scale single-cell data from other -omics modalities. We introduce and compare multiple feature space constructions for epigenetic data and show the feasibility of common clustering, dimension reduction and trajectory learning techniques. We benchmark epiScanpy by interrogating different single-cell brain mouse atlases of DNA methylation, ATAC-seq and transcriptomics. We find that differentially methylated and differentially open markers between cell clusters enrich transcriptome-based cell type labels by orthogonal epigenetic information.


2020 ◽  
Author(s):  
Giovana Ravizzoni Onzi ◽  
Juliano Luiz Faccioni ◽  
Alvaro G. Alvarado ◽  
Paula Andreghetto Bracco ◽  
Harley I. Kornblum ◽  
...  

Outliers are often ignored or even removed from data analysis. In cancer, however, single outlier cells can be of major importance, since they have uncommon characteristics that may confer capacity to invade, metastasize, or resist to therapy. Here we present the Single-Cell OUTlier analysis (SCOUT), a resource for single-cell data analysis focusing on outlier cells, and the SCOUT Selector (SCOUTS), an application to systematically apply SCOUT on a dataset over a wide range of biological markers. Using publicly available datasets of cancer samples obtained from mass cytometry and single-cell RNA-seq platforms, outlier cells for the expression of proteins or RNAs were identified and compared to their non-outlier counterparts among different samples. Our results show that analyzing single-cell data using SCOUT can uncover key information not easily observed in the analysis of the whole population.


2019 ◽  
Author(s):  
Joshua Batson ◽  
Loïc Royer ◽  
James Webber

Single-cell RNA sequencing enables researchers to study the gene expression of individual cells. However, in high-throughput methods the portrait of each individual cell is noisy, representing thousands of the hundreds of thousands of mRNA molecules originally present. While many methods for denoising single-cell data have been proposed, a principled procedure for selecting and calibrating the best method for a given dataset has been lacking. We present “molecular cross-validation,” a statistically principled and data-driven approach for estimating the accuracy of any denoising method without the need for ground-truth. We validate this approach for three denoising methods—principal component analysis, network diffusion, and a deep autoencoder—on a dataset of deeply-sequenced neurons. We show that molecular cross-validation correctly selects the optimal parameters for each method and identifies the best method for the dataset.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Huijian Feng ◽  
Lihui Lin ◽  
Jiekai Chen

Abstract Background Single-cell RNA sequencing is becoming a powerful tool to identify cell states, reconstruct developmental trajectories, and deconvolute spatial expression. The rapid development of computational methods promotes the insight of heterogeneous single-cell data. An increasing number of tools have been provided for biological analysts, of which two programming languages- R and Python are widely used among researchers. R and Python are complementary, as many methods are implemented specifically in R or Python. However, the different platforms immediately caused the data sharing and transformation problem, especially for Scanpy, Seurat, and SingleCellExperiemnt. Currently, there is no efficient and user-friendly software to perform data transformation of single-cell omics between platforms, which makes users spend unbearable time on data Input and Output (IO), significantly reducing the efficiency of data analysis. Results We developed scDIOR for single-cell data transformation between platforms of R and Python based on Hierarchical Data Format Version 5 (HDF5). We have created a data IO ecosystem between three R packages (Seurat, SingleCellExperiment, Monocle) and a Python package (Scanpy). Importantly, scDIOR accommodates a variety of data types across programming languages and platforms in an ultrafast way, including single-cell RNA-seq and spatial resolved transcriptomics data, using only a few codes in IDE or command line interface. For large scale datasets, users can partially load the needed information, e.g., cell annotation without the gene expression matrices. scDIOR connects the analytical tasks of different platforms, which makes it easy to compare the performance of algorithms between them. Conclusions scDIOR contains two modules, dior in R and diopy in Python. scDIOR is a versatile and user-friendly tool that implements single-cell data transformation between R and Python rapidly and stably. The software is freely accessible at https://github.com/JiekaiLab/scDIOR.


2021 ◽  
Author(s):  
Klebea Carvalho ◽  
Elisabeth Rebboah ◽  
Camden Jansen ◽  
Katherine Williams ◽  
Andrew Dowey ◽  
...  

SummaryGene regulatory networks (GRNs) provide a powerful framework for studying cellular differentiation. However, it is less clear how GRNs encode cellular responses to everyday microenvironmental cues. Macrophages can be polarized and potentially repolarized based on environmental signaling. In order to identify the GRNs that drive macrophage polarization and the heterogeneous single-cell subpopulations that are present in the process, we used a high-resolution time course of bulk and single-cell RNA-seq and ATAC-seq assays of HL-60-derived macrophages polarized towards M1 or M2 over 24 hours. We identified transient M1 and M2 markers, including the main transcription factors that underlie polarization, and subpopulations of naive, transitional, and terminally polarized macrophages. We built bulk and single-cell polarization GRNs to compare the recovered interactions and found that each technology recovered only a subset of known interactions. Our data provide a resource to study the GRN of cellular maturation in response to microenvironmental stimuli in a variety of contexts in homeostasis and disease.


Author(s):  
Massimo Andreatta ◽  
Santiago J. Carmona

AbstractComputational tools for the integration of single-cell transcriptomics data are designed to correct batch effects between technical replicates or different technologies applied to the same population of cells. However, they have inherent limitations when applied to heterogeneous sets of data with moderate overlap in cell states or sub-types. STACAS is a package for the identification of integration anchors in the Seurat environment, optimized for the integration of datasets that share only a subset of cell types. We demonstrate that by i) correcting batch effects while preserving relevant biological variability across datasets, ii) filtering aberrant integration anchors with a quantitative distance measure, and iii) constructing optimal guide trees for integration, STACAS can accurately align scRNA-seq datasets composed of only partially overlapping cell populations. We anticipate that the algorithm will be a useful tool for the construction of comprehensive single-cell atlases by integration of the growing amount of single-cell data becoming available in public repositories.Code availabilityR package:https://github.com/carmonalab/STACASDocker image:https://hub.docker.com/repository/docker/mandrea1/stacas_demo


2021 ◽  
Author(s):  
Snehalika Lall ◽  
Abhik Ghosh ◽  
Sumanta Ray ◽  
Sanghamitra Bandyopadhyay

Abstract Annotation of cells in single-cell clustering requires a homogeneous grouping of cell populations. Since single cell data is susceptible to technical noise, the quality of genes selected prior to clustering is of crucial importance in the preliminary steps of downstream analysis. Therefore, interest in robust gene selection has gained considerable attention in recent years. We introduce sc-REnF, (robust entropy based feature (gene) selection method), aiming to leverage the advantages of Rényi and Tsallis> entropies in gene selection for single cell clustering. Experiments demonstrate that with tuned parameter (q), Rényi and Tsallis entropies select genes that improved the clustering results significantly, over the other competing methods. sc-REnF can capture relevancy and redundancy among the features of noisy data extremely well due to its robust objective function. Moreover, the selected features/genes can able to clusters the unknown cells with a high accuracy. Finally, sc-REnF yields good clustering performance in small sample, large feature scRNA-seq data.


2015 ◽  
Author(s):  
Miguel Juliá ◽  
Amalio Telenti ◽  
Antonio Rausell

Summary: Cell differentiation processes are achieved through a continuum of hierarchical intermediate cell-states that might be captured by single-cell RNA seq. Existing computational approaches for the assessment of cell-state hierarchies from single-cell data might be formalized under a general framework composed of i) a metric to assess cell-to-cell similarities (combined or not with a dimensionality reduction step), and ii) a graph-building algorithm (optionally making use of a cells-clustering step). Sincell R package implements a methodological toolbox allowing flexible workflows under such framework. Furthermore, Sincell contributes new algo-rithms to provide cell-state hierarchies with statistical support while accounting for stochastic factors in single-cell RNA seq. Graphical representations and functional association tests are provided to interpret hierarchies. Sincell functionalities are illustrated in a real case study where its ability to discriminate noisy from stable cell-state hierarchies is demonstrated. Availability and implementation: Sincell is an open-source R/Bioconductor package available at http://bioconductor.org/packages/3.1/bioc/html/sincell.html. A detailed vignette describing functions and workflows is provided with the package.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1395-1395
Author(s):  
Andre Olsson ◽  
H. Leighton Grimes ◽  
Virendra K Chaudhri ◽  
Philip Dexheimer ◽  
Bruce J Aronow ◽  
...  

Abstract In spite of tremendous advances in the analysis of hematopoietic progenitors and transcription factors that give rise to different lineages, molecular insight into the mechanisms that underlie cell fate choice at the level of individual cells is lacking. We utilized single-cell RNA sequencing of murine granulocyte-monocyte progenitors (GMPs) to analyze the molecular basis of cell fate choice. Over 200 libraries were generated with average read depths of 4 million per library and an expressed gene call of over 3,800 genes with FPKM >3. Our data reveal a varied but coherent spectrum of gene expression patterns in individual murine GMPs. The majority of cells could be clustered into ones expressing either granulocytic or monocytic genes, suggesting that they were primed for lineage determination. A minority of GMPs expressed a mixed-lineage pattern of genes. The single-cell data suggested an antagonistic transcription factor circuit involving Gfi1 and IRF8 that was validated with both loss- and gain-of-function experiments in GMPs. Our data highlight the utility of single cell RNA-Seq analysis to reveal molecular mechanisms controlling lineage fate decisions in hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document