scholarly journals Animal soundscapes reveal key markers of Amazon forest degradation from fire and logging

2021 ◽  
Author(s):  
Danielle I. Rappaport ◽  
Anshuman Swain ◽  
William F. Fagan ◽  
Ralph Dubayah ◽  
Douglas C. Morton

AbstractSafeguarding tropical forest biodiversity requires solutions for monitoring ecosystem composition over time. In the Amazon, logging and fire reduce forest carbon stocks and alter tree species diversity, but the long-term consequences for wildlife remain unclear, especially for lesser-known taxa. Here, we combined data from multi-day acoustic surveys, airborne lidar, and satellite timeseries covering logged and burned forests (n=39) in the southern Brazilian Amazon to identify acoustic markers of degradation. Our findings contradict theoretical expectations from the Acoustic Niche Hypothesis that animal communities in more degraded habitats occupy fewer ‘acoustic niches.’ Instead, we found that habitat structure (e.g., aboveground biomass) was not a consistent proxy for biodiversity based on divergent patterns of acoustic space occupancy (ASO) in logged and burned forests. Full 24-hr soundscapes highlighted a stark and sustained reorganization in community structure after multiple fires; animal communication networks were quieter, more homogenous, and less acoustically integrated in forests burned multiple times than in logged or once-burned forests. These findings demonstrate strong biodiversity co-benefits from protecting Amazon forests from recurrent fire activity. By contrast, soundscape changes after logging were subtle and more consistent with community recovery than reassembly. In both logged and burned forests, insects were the dominant acoustic markers of degradation, particularly during midday and nighttime hours that are not typically sampled by traditional field surveys of biodiversity. The acoustic fingerprints of degradation history were conserved across replicate recording locations at each site, indicating that soundscapes offer a robust, taxonomically inclusive solution for tracking changes in community composition over time.Significance StatementFire and logging reduce the carbon stored in Amazon forests, but little is known about how human degradation alters animal communities. We recorded thousands of hours of ecosystem sounds to investigate animal community assembly and the associations between biodiversity and biomass following Amazon forest degradation over time. 24-hr patterns of acoustic activity differed between logged and burned forests, and we observed large and sustained breakpoints in community structure after multiple burns. Soundscape differences among degraded forests were clearest during insect-dominated hours rarely sampled in field studies of biodiversity. These findings demonstrate that acoustic monitoring holds promise for routine biodiversity accounting, even by non-experts, to capture a holistic measure of animal communities in degraded tropical forests and benchmark change over time.

2019 ◽  
Vol 11 (6) ◽  
pp. 709 ◽  
Author(s):  
Ekena Rangel Pinagé ◽  
Michael Keller ◽  
Paul Duffy ◽  
Marcos Longo ◽  
Maiza dos-Santos ◽  
...  

Forest degradation is common in tropical landscapes, but estimates of the extent and duration of degradation impacts are highly uncertain. In particular, selective logging is a form of forest degradation that alters canopy structure and function, with persistent ecological impacts following forest harvest. In this study, we employed airborne laser scanning in 2012 and 2014 to estimate three-dimensional changes in the forest canopy and understory structure and aboveground biomass following reduced-impact selective logging in a site in Eastern Amazon. Also, we developed a binary classification model to distinguish intact versus logged forests. We found that canopy gap frequency was significantly higher in logged versus intact forests even after 8 years (the time span of our study). In contrast, the understory of logged areas could not be distinguished from the understory of intact forests after 6–7 years of logging activities. Measuring new gap formation between LiDAR acquisitions in 2012 and 2014, we showed rates 2 to 7 times higher in logged areas compared to intact forests. New gaps were spatially clumped with 76 to 89% of new gaps within 5 m of prior logging damage. The biomass dynamics in areas logged between the two LiDAR acquisitions was clearly detected with an average estimated loss of −4.14 ± 0.76 MgC ha−1 y−1. In areas recovering from logging prior to the first acquisition, we estimated biomass gains close to zero. Together, our findings unravel the magnitude and duration of delayed impacts of selective logging in forest structural attributes, confirm the high potential of airborne LiDAR multitemporal data to characterize forest degradation in the tropics, and present a novel approach to forest classification using LiDAR data.


Shore & Beach ◽  
2019 ◽  
pp. 3-14 ◽  
Author(s):  
Joshua Davis ◽  
Diana Mitsova ◽  
Tynon Briggs ◽  
Tiffany Briggs

Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments


2021 ◽  
Vol 9 ◽  
Author(s):  
Michael F. Clarke ◽  
Luke T. Kelly ◽  
Sarah C. Avitabile ◽  
Joe Benshemesh ◽  
Kate E. Callister ◽  
...  

Fire shapes ecosystems globally, including semi-arid ecosystems. In Australia, semi-arid ‘mallee’ ecosystems occur primarily across the southern part of the continent, forming an interface between the arid interior and temperate south. Mallee vegetation is characterized by short, multi-stemmed eucalypts that grow from a basal lignotuber. Fire shapes the structure and functioning of mallee ecosystems. Using the Murray Mallee region in south-eastern Australia as a case study, we examine the characteristics and role of fire, the consequences for biota, and the interaction of fire with other drivers. Wildfires in mallee ecosystems typically are large (1000s ha), burn with high severity, commonly cause top-kill of eucalypts, and create coarse-grained mosaics at a regional scale. Wildfires can occur in late spring and summer in both dry and wet years. Recovery of plant and animal communities is predictable and slow, with regeneration of eucalypts and many habitat components extending over decades. Time since the last fire strongly influences the distribution and abundance of many species and the structure of plant and animal communities. Animal species display a discrete set of generalized responses to time since fire. Systematic field studies and modeling are beginning to reveal how spatial variation in fire regimes (‘pyrodiversity’) at different scales shapes biodiversity. Pyrodiversity includes variation in the extent of post-fire habitats, the diversity of post-fire age-classes and their configuration. At regional scales, a desirable mix of fire histories for biodiversity conservation includes a combination of early, mid and late post-fire age-classes, weighted toward later seral stages that provide critical habitat for threatened species. Biodiversity is also influenced by interactions between fire and other drivers, including land clearing, rainfall, herbivory and predation. Extensive clearing for agriculture has altered the nature and impact of fire, and facilitated invasion by pest species that modify fuels, fire regimes and post-fire recovery. Given the natural and anthropogenic drivers of fire and the consequences of their interactions, we highlight opportunities for conserving mallee ecosystems. These include learning from and fostering Indigenous knowledge of fire, implementing actions that consider synergies between fire and other processes, and strategic monitoring of fire, biodiversity and other drivers to guide place-based, adaptive management under climate change.


2015 ◽  
Vol 12 (23) ◽  
pp. 19043-19072 ◽  
Author(s):  
D. C. Morton ◽  
J. Rubio ◽  
B. D. Cook ◽  
J.-P. Gastellu-Etchegorry ◽  
M. Longo ◽  
...  

Abstract. The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80–0.82), light utilization varied seasonally (0.67–0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.


2019 ◽  
Vol 13 (10) ◽  
pp. 1273-1282 ◽  
Author(s):  
Gianluca Galazzo ◽  
Danyta I Tedjo ◽  
Dion S J Wintjens ◽  
Paul H M Savelkoul ◽  
Ad A M Masclee ◽  
...  

Abstract Background Microbial shifts have been associated with disease activity in Crohn’s disease [CD], but findings on specific taxa are inconsistent. This may be due to differences in applied methods and cross-sectional study designs. We prospectively examined the faecal microbiota in adult CD patients with changing or stable disease course over time. Methods Faeces were collected at two time-points from 15 healthy control individuals [HCs], 35 CD patients who were in remission and who maintained remission [RRs], and 22 CD patients during remission and also during subsequent exacerbation [RAs]. The microbial composition was assessed by 16S rRNA [V4] gene sequencing. Results Compared with HCs, patients with CD had a lower microbial richness [p = 0.0002] and diversity [p = 0.005]. Moreover, the microbial community structure of a subset of patients, clustered apart from HCs, was characterized by low microbial diversity and Faecalibacterium abundance. Patients within this cluster did not differ with respect to long-term disease course compared with patients with a ‘healthy-appearing’ microbiota. Over time, microbial richness and diversity did not change in RR versus RA patients. Although the microbial community structure of both RR and RA patients was less stable over time compared with that of HCs, no differences were observed between the patient groups [p = 0.17]; nor was the stability impacted by Montreal classification, medication use, or surgery. Conclusion The altered microbiota composition and stability in CD was neither associated with disease activity nor long-term disease course, questioning its involvement in the development of an exacerbation. The aberrant microbiota composition in a subset of CD patients warrants further exploration of a more microbiota-driven etiology in this group.


2019 ◽  
Vol 23 (2) ◽  
pp. 293-304 ◽  
Author(s):  
Kristine Meise ◽  
Daniel W. Franks ◽  
Jakob Bro‐Jørgensen

2003 ◽  
Vol 2003 (1) ◽  
pp. 285-289
Author(s):  
E.S. Gilfillan ◽  
D.S. Page ◽  
K.R. Parker

ABSTRACT A 1990/1991 shoreline ecology program to assess the fate and effects of the Exxon Valdez oil spill in Prince William Sound was updated in 1998 and 1999. This update included a sediment sampling program for organisms at “worst case” sites and at randomly chosen reference sites. Correspondence analysis (CA), a statistical method that examines animal communities in terms of their similarity, was used to define community structure Statistical analysis of the degree of similarity between communities was used to assess effects of site-specific variables (sediment grain size, total organic carbon (TOC) and wave energy), interannual variation, and degree of oiling. Interannual variability had a significant effect on community structure, whereas site specific variables and degree of oiling did not. Differences in communities between 1998 and other years were particularly dramatic. The importance of interannual change demonstrates the importance of multi-year sampling and of appropriate study designs for separating impact effects from the natural occurring environmental factors which affect biological communities.


Sign in / Sign up

Export Citation Format

Share Document