scholarly journals Ruling out SARS-CoV-2 infection using exhaled breath analysis by electronic nose in a public health setting

Author(s):  
Rianne de Vries ◽  
René M. Vigeveno ◽  
Simone Mulder ◽  
Niloufar Farzan ◽  
Demi R. Vintges ◽  
...  

AbstractBackgroundRapid and accurate detection of SARS-CoV-2 infected individuals is crucial for taking timely measures and minimizing the risk of further SARS-CoV-2 spread. We aimed to assess the accuracy of exhaled breath analysis by electronic nose (eNose) for the discrimination between individuals with and without a SARS-CoV-2 infection.MethodsThis was a prospective real-world study of individuals presenting to public test facility for SARS-CoV-2 detection by molecular amplification tests (TMA or RT-PCR). After sampling of a combined throat/nasopharyngeal swab, breath profiles were obtained using a cloud-connected eNose. Data-analysis involved advanced signal processing and statistics based on independent t-tests followed by linear discriminant and ROC analysis. Data from the training set were tested in a validation, a replication and an asymptomatic set.FindingsFor the analysis 4510 individuals were available. In the training set (35 individuals with; 869 without SARS-CoV-2), the eNose sensors were combined into a composite biomarker with a ROC-AUC of 0.947 (CI:0.928-0.967). These results were confirmed in the validation set (0.957; CI:0.942-0.971, n=904) and externally validated in the replication set (0.937; CI:0.926-0.947, n=1948) and the asymptomatic set (0.909; CI:0.879-0.938, n=754). Selecting a cut-off value of 0.30 in the training set resulted in a sensitivity/specificity of 100/78, >99/84, 98/82% in the validation, replication and asymptomatic set, respectively.InterpretationeNose represents a quick and non-invasive method to reliably rule out SARS-CoV-2 infection in public health test facilities and can be used as a screening test to define who needs an additional confirmation test.FundingMinistry of Health, Welfare and SportResearch in contextEvidence before this studyElectronic nose technology is an emerging diagnostic tool for diagnosis and phenotyping of a wide variety of diseases, including inflammatory respiratory diseases, lung cancer, and infections.As of Feb 13, 2021, our search of PubMed using keywords “COVID-19” OR “SARS-CoV-2” AND “eNose” OR “electronic nose” OR “exhaled breath analysis” yielded 4 articles (1-4) that have assessed test characteristics of electronic nose to diagnose COVID-19. In these small studies the obtained signals using sensor-based technologies, two-dimensional gas chromatography and time-of-flight mass spectrometry, or proton transfer reaction time-of-flight mass spectrometry, provided adequate discrimination between patients with and without COVID-19.Added value of this studyWe prospectively studied the accuracy of exhaled breath analysis by electronic nose (eNose) to diagnose or rule out a SARS-CoV-2 infection in individuals with and without symptoms presenting to a public test facility. In the training set with 904 individuals, the eNose sensors were combined into a composite biomarker with a ROC-AUC of 0.948. In three independent validation cohorts of 3606 individuals in total, eNose was able to reliably rule out SARS-CoV-2 infection in 70-75% of individuals, with a sensitivity ranging between 98-100%, and a specificity between 78-84%. No association was found between cycle thresholds values, as semi-quantitative measure of viral load, and eNose variables.Implications of all the available evidenceThe available findings, including those from our study, support the use of eNose technology to distinguish between individuals with and without a SARS-CoV-2 infection with high accuracy. Exhaled breath analysis by eNose represents a quick and non-invasive method to reliably rule out a SARS-CoV-2 infection in public health test facilities. The results can be made available within seconds and can therefore be used as screening instrument. The eNose can reliably rule out a SARS-CoV-2 infection, eliminating the need for additional time-consuming, stressful, and expensive diagnostic tests in the majority of individuals.

2020 ◽  
Vol 311 ◽  
pp. 127932 ◽  
Author(s):  
Tarik Saidi ◽  
Mohammed Moufid ◽  
Kelvin de Jesus Beleño-Saenz ◽  
Tesfalem Geremariam Welearegay ◽  
Nezha El Bari ◽  
...  

Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106767
Author(s):  
Cristhian Manuel Durán Acevedo ◽  
Carlos A. Cuastumal Vasquez ◽  
Jeniffer Katerine Carrillo Gómez

ETRI Journal ◽  
2018 ◽  
Vol 40 (6) ◽  
pp. 802-812 ◽  
Author(s):  
Jin-Young Jeon ◽  
Jang-Sik Choi ◽  
Joon-Boo Yu ◽  
Hae-Ryong Lee ◽  
Byoung Kuk Jang ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 209
Author(s):  
Davide Marzorati ◽  
Luca Mainardi ◽  
Giulia Sedda ◽  
Roberto Gasparri ◽  
Lorenzo Spaggiari ◽  
...  

Lung cancer is characterized by a tremendously high mortality rate and a low 5-year survival rate when diagnosed at a late stage. Early diagnosis of lung cancer drastically reduces its mortality rate and improves survival. Exhaled breath analysis could offer a tool to clinicians to improve the ability to detect lung cancer at an early stage, thus leading to a reduction in the associated survival rate. In this paper, we present an electronic nose for the automatic analysis of exhaled breath. A total of five a-specific gas sensors were embedded in the electronic nose, making it sensitive to different volatile organic compounds (VOCs) contained in exhaled breath. Nine features were extracted from each gas sensor response to exhaled breath, identifying the subject breathprint. We tested the electronic nose on a cohort of 80 subjects, equally split between lung cancer and at-risk control subjects. Including gas sensor features and clinical features in a classification model, recall, precision, and accuracy of 78%, 80%, and 77% were reached using a fourfold cross-validation approach. The addition of other a-specific gas sensors, or of sensors specific to certain compounds, could improve the classification accuracy, therefore allowing for the development of a clinical tool to be integrated in the clinical pipeline for exhaled breath analysis and lung cancer early diagnosis.


2016 ◽  
Vol 64 (2) ◽  
pp. S734-S735
Author(s):  
N. McDonald ◽  
R. Sinha ◽  
R. de Vries ◽  
P. Hayes ◽  
R. Chamuleau ◽  
...  

Author(s):  
Mustafa Abumeeiz ◽  
Lauren Elliott ◽  
Phillip Olla

Abstract Due to the COVID-19 pandemic, there is currently a need for accurate, rapid, and easy-to-administer diagnostic tools to help communities manage local outbreaks and assess the spread of disease. The use of Artificial Intelligence within the domain of breath analysis techniques has shown to have potential in diagnosing a variety of diseases such as cancer and lung disease by analyzing volatile organic compounds (VOCs) in exhaled breath. This combined with their rapid, easy-to-use, and non-invasive nature makes them a good candidate for use in diagnosing COVID-19 in large scale public health operations. However, there remains issues with their implementation when it comes to the infrastructure currently available to support their use on a broad scale. This includes issues of standardization, and whether or not a characteristic VOC pattern can be identified for COVID-19. Despite these difficulties, breathalysers offer potential to assist in pandemic responses and their use should be investigated.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 476
Author(s):  
Kaushiki Dixit ◽  
Somayeh Fardindoost ◽  
Adithya Ravishankara ◽  
Nishat Tasnim ◽  
Mina Hoorfar

With the global population prevalence of diabetes surpassing 463 million cases in 2019 and diabetes leading to millions of deaths each year, there is a critical need for feasible, rapid, and non-invasive methodologies for continuous blood glucose monitoring in contrast to the current procedures that are either invasive, complicated, or expensive. Breath analysis is a viable methodology for non-invasive diabetes management owing to its potential for multiple disease diagnoses, the nominal requirement of sample processing, and immense sample accessibility; however, the development of functional commercial sensors is challenging due to the low concentration of volatile organic compounds (VOCs) present in exhaled breath and the confounding factors influencing the exhaled breath profile. Given the complexity of the topic and the skyrocketing spread of diabetes, a multifarious review of exhaled breath analysis for diabetes monitoring is essential to track the technological progress in the field and comprehend the obstacles in developing a breath analysis-based diabetes management system. In this review, we consolidate the relevance of exhaled breath analysis through a critical assessment of current technologies and recent advancements in sensing methods to address the shortcomings associated with blood glucose monitoring. We provide a detailed assessment of the intricacies involved in the development of non-invasive diabetes monitoring devices. In addition, we spotlight the need to consider breath biomarker clusters as opposed to standalone biomarkers for the clinical applicability of exhaled breath monitoring. We present potential VOC clusters suitable for diabetes management and highlight the recent buildout of breath sensing methodologies, focusing on novel sensing materials and transduction mechanisms. Finally, we portray a multifaceted comparison of exhaled breath analysis for diabetes monitoring and highlight remaining challenges on the path to realizing breath analysis as a non-invasive healthcare approach.


Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 171 ◽  
Author(s):  
Simone Scarlata ◽  
Panaiotis Finamore ◽  
Martina Meszaros ◽  
Silvano Dragonieri ◽  
Andras Bikov

Chronic obstructive pulmonary disease (COPD) is a common progressive disorder of the respiratory system which is currently the third leading cause of death worldwide. Exhaled breath analysis is a non-invasive method to study lung diseases, and electronic noses have been extensively used in breath research. Studies with electronic noses have proved that the pattern of exhaled volatile organic compounds is different in COPD. More recent investigations have reported that electronic noses could potentially distinguish different endotypes (i.e., neutrophilic vs. eosinophilic) and are able to detect microorganisms in the airways responsible for exacerbations. This article will review the published literature on electronic noses and COPD and help in identifying methodological, physiological, and disease-related factors which could affect the results.


2020 ◽  
Vol MA2020-01 (34) ◽  
pp. 2407-2407
Author(s):  
Hyung-Gi Byun ◽  
Joon-Bu Yu ◽  
Chong-Yun Kang ◽  
Yoo-Jin Lee ◽  
Byung-Kuk Jang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document