scholarly journals Characterization of heliorhodopsins detected via functional metagenomics in freshwater Actinobacteria, Chloroflexi and Archaea

2021 ◽  
Author(s):  
Ariel Chazan ◽  
Andrey Rozenberg ◽  
Kentaro Mannen ◽  
Takashi Nagata ◽  
Ran Tahan ◽  
...  

AbstractRhodopsins are widespread in microbes residing in diverse aquatic environments across the globe. Recently, a new unusual rhodopsin family, the heliorhodopsins (HeRs), was discovered, distributed among diverse bacteria, archaea, eukarya and even viruses. Here, using functional metagenomics on samples from Lake Ha’Hula and Ein Afek reserve, we found and characterized ten HeRs representing divergent members of the family. The expressed HeRs absorb light in the green and yellow wavelengths and originate from Actinobacteria, Chloroflexi and Archaea. The photocycle of the HeR from Chloroflexi revealed a low accumulation of the M-intermediate that we connect to the lack of two conserved histidine residues in transmembrane helices 1 and 2 in this protein. Another of HeR, from Actinobacteria, exhibited an unusually fast photocycle (166 ms, 5 times faster than HeR-48C12). To further explore the still unresolved question of the HeR function, we performed an analysis of protein families among genes neighboring HeRs, in our clones and thousands of other microbes. This analysis revealed a putative connection between HeRs and genes involved in oxidative stress. At the same time, very few protein families were found to distinguish genes surrounding prokaryotic HeRs from those surrounding rhodopsin pumps. The strongest association was found with the DegV family involved in activation of fatty acids and uncharacterized family DUF2177, which allowed us to hypothesize that HeRs are involved in membrane lipid remodeling. This work further establishes functional metagenomics as a simple and fruitful method of screening for new rhodopsins.SignificanceThe recently discovered divergent rhodopsin family of heliorhodopsins is abundant in freshwater environments. In this study, we sampled a habitat rich in dissolved organic matter to increase our chances of finding spectrally shifted rhodopsins. Using functional metagenomics, diverse heliorhodopsins absorbing green and yellow light were discovered. The metagenomic clones originated from diverse prokaryotic groups: Actinobacteria, Chloroflexi and even Archaea, emphasizing the versatility of the E. coli expression system used. Photocycles of representative heliorhodopsins were measured and exhibited diverse kinetic characteristics. Analysis of genes neighboring heliorhodopsins in diverse prokaryotes revealed their putative connection to membrane lipid re-modeling and oxidative stress. Our findings suggest that functional metagenomics is a productive method for the discovery of new and diverse rhodopsins.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


2021 ◽  
Author(s):  
Cristina Hernandez Rollan ◽  
Kristoffer Bach Falkenberg ◽  
Maja Rennig ◽  
Andreas Birk Bertelsen ◽  
Morten Norholm

E. coli is a gram-negative bacteria used mainly in academia and in some industrial scenarios, as a protein production workhorse. This is due to its ease of manipulation and the range of genetic tools available. This protocol describes how to express proteins in the periplasm E. coli with the strain BL21 (DE3) using a T7 expression system. Specifically, it describes a series of steps and tips to express "hard-to-express" proteins in E. coli, as for instance, LPMOs. The protocol is adapted from Hemsworth, G. R., Henrissat, B., Davies, G. J., and Walton, P. H. (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol.10, 122–126. .


2020 ◽  
Author(s):  
Sailesh Malla ◽  
Eric van der Helm ◽  
Behrooz Darbani ◽  
Stefan Wieschalka ◽  
Jochen Forster ◽  
...  

AbstractLack of active export system often limits the industrial bio-based production processes accumulating the intracellular product and hence complexing the purification steps. L-lysine, an essential amino acid, is produced biologically in quantities exceeding two million tons per year; yet, L-lysine production is challenged by efficient export system at high titres during fermentation. To address this issue, new exporter candidates for efficient efflux of L-lysine are needed. Using metagenomic functional selection, we identified 58 genes encoded on 28 unique metagenomic fragments from cow gut microbiome library that improved L-lysine tolerance. These genes include a novel putative L-lysine transporter, belonging to a previously uncharacterized EamA superfamily. Characterization using Xenopus oocyte expression system as well as an Escherichia coli host demonstrates activity as a L-lysine transporter. This novel exporter improved L-lysine tolerance in E. coli by 40% and enhanced the specific productivity of L-lysine in an industrial Corynebacterium glutamicum strain by 12%. Our approach allows the sequence-independent discovery of novel exporters and can be deployed to increase titres and productivity of toxicity-limited bioprocesses.


2019 ◽  
Vol 295 (4) ◽  
pp. 981-993 ◽  
Author(s):  
Laura Tempelhagen ◽  
Anita Ayer ◽  
Doreen E. Culham ◽  
Roland Stocker ◽  
Janet M. Wood

Ubiquinone 8 (coenzyme Q8 or Q8) mediates electron transfer within the aerobic respiratory chain, mitigates oxidative stress, and contributes to gene expression in Escherichia coli. In addition, Q8 was proposed to confer bacterial osmotolerance by accumulating during growth at high osmotic pressure and altering membrane stability. The osmolyte trehalose and membrane lipid cardiolipin accumulate in E. coli cells cultivated at high osmotic pressure. Here, Q8 deficiency impaired E. coli growth at low osmotic pressure and rendered growth osmotically sensitive. The Q8 deficiency impeded cellular O2 uptake and also inhibited the activities of two proton symporters, the osmosensing transporter ProP and the lactose transporter LacY. Q8 supplementation decreased membrane fluidity in liposomes, but did not affect ProP activity in proteoliposomes, which is respiration-independent. Liposomes and proteoliposomes prepared with E. coli lipids were used for these experiments. Similar oxygen uptake rates were observed for bacteria cultivated at low and high osmotic pressures. In contrast, respiration was dramatically inhibited when bacteria grown at the same low osmotic pressure were shifted to high osmotic pressure. Thus, respiration was restored during prolonged growth of E. coli at high osmotic pressure. Of note, bacteria cultivated at low and high osmotic pressures had similar Q8 concentrations. The protection of respiration was neither diminished by cardiolipin deficiency nor conferred by trehalose overproduction during growth at low osmotic pressure, but rather might be achieved by Q8-independent respiratory chain remodeling. We conclude that osmotolerance is conferred through Q8-independent protection of respiration, not by altering physical properties of the membrane.


Parasitology ◽  
1996 ◽  
Vol 112 (3) ◽  
pp. 331-338 ◽  
Author(s):  
X. Q. Hong ◽  
J. Santiago Mejia ◽  
S. Kumar ◽  
F. B. Perler ◽  
C. K. S. Carlow

SUMMARYDirofilaria immitis is an important filarial parasite of dogs and cats, and a useful model for human filariasis. Current diagnostic tests for heartworm infection in animals rely on the presence of fecund female worms (usually found 6·5 months post-infection or later) and therefore fail to detect pre-patent infections. Putative pepsin inhibitors from 2 filarial parasites of humans namely Onchocerca volvulus (Ov33, Oc3.6, OvDSB) and Brugia malayi (Bm33), have been shown to be useful in diagnosis of onchocerciasis and lymphatic filariasis, respectively. Previous studies have suggested that a homologue exists in D. immitis (DiT33), which may have potential in diagnosis of heartworm infection. In this study, the isolation and characterization of a cDNA clone encoding DiT33 is described.‡ This cDNA contains 12 bases of the nematode-specific 22 nucleotide spliced leader sequence and encodes a 26·4 kDa-protein with a high level of similarity (87–89%) to other filarial members of the family. DJT33 was over-expressed in E. coli as a fusion with the maltose-binding protein and serological analysis was performed using a panel of clinically defined dog sera. The findings of this study indicate that DiT33 is a promising antigen for the early detection of D. immitis and may be a valuable tool in the control and management of heartworm infection.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Gonzalo A. Pradenas ◽  
Waldo A. Díaz-Vásquez ◽  
José M. Pérez-Donoso ◽  
Claudio C. Vásquez

Reactive oxygen species (ROS) damage macromolecules and cellular components in nearly all kinds of cells and often generate toxic intracellular byproducts. In this work, aldehyde generation derived from theEscherichia colimembrane oxidation as well as membrane fatty acid profiles, protein oxidation, and bacterial resistance to oxidative stress elicitors was evaluated. Studies included wild-type cells as well as cells exhibiting a modulated monounsaturated fatty acid (MUFA) ratio. The hydroxyaldehyde 4-hydroxy 2-nonenal was found to be most likely produced byE. coli, whose levels are dependent upon exposure to oxidative stress elicitors. Aldehyde amounts and markers of oxidative damage decreased upon exposure toE. colicontaining low MUFA ratios, which was paralleled by a concomitant increase in resistance to ROS-generating compounds. MUFAs ratio, lipid peroxidation, and aldehyde generation were found to be directly related; that is, the lower the MUFAs ratio, the lower the peroxide and aldehyde generation levels. These results provide additional evidence about MUFAs being targets for membrane lipid oxidation and their relevance in aldehyde generation.


2011 ◽  
Vol 393-395 ◽  
pp. 641-650
Author(s):  
Xi Xia Hu ◽  
An Chun Cheng ◽  
Ming Shu Wang

A comprehensive analysis of codon usage bias of DPV UL13 gene (GenBank Accession No. EU195098) was performed to provide a basis for understanding the relevant mechanism for its biased usage of synonymous codons and for selecting suitable expression systems to improve the expression of UL13 genes. Our study showed that codon usage bias of DPV UL13 gene strongly prefered to the synonymous with A and T at the third codon position. And ENC value and GC3s contents of the codon usage bias of UL13 gene in DPV were significantly different compared with those in other 21 reference herpesviruses. The phylogentic analysis about the putative protein of DPV UL13 and the 21 reference herpesviruses revealed that DPV was evolutionarily closer to the AnHV-1. In addition, the codon usage bias of DPV UL13 gene was compared with those of E. coli, yeast and human. There are 23 codons showing distinct usage differences between DPV and E. coli, 12 codons between DPV and yeast, 21 codons between DPV and human. Therefore, the yeast expression system is more appropriate for heterologous expression of the DPV UL13 gene.


1999 ◽  
Vol 181 (20) ◽  
pp. 6387-6395 ◽  
Author(s):  
S. Schubert ◽  
D. Fischer ◽  
J. Heesemann

ABSTRACT Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of theYersinia fep-fes gene cluster orthologous to theEscherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded byfepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD,fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD orfes genes abrogates enterochelin-supported growth ofY. enterocolitica on iron-chelated media. In contrast toE. coli, the fep-fes gene cluster inY. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, andYersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the familyEnterobacteriaceae.


Sign in / Sign up

Export Citation Format

Share Document