Four large indels detected by cpTILLING in barley chloroplast mutator seedlings

2021 ◽  
Author(s):  
F. Lencina ◽  
A.M. Landau ◽  
M.G. Pacheco ◽  
K. Kobayashi ◽  
A.R. Prina

AbstractIn a previous work, a polymorphism detection strategy based on mismatch digestion was applied to the chloroplast genome of barley seedlings that carried the chloroplast mutator (cpm) genotype through many generations. Sixty-two different one- or two-nucleotide-polymorphisms were detected along with four large indels: an insertion of 15 bp in the intergenic region between tRNAHis and rps19 genes, a deletion of 620 bp in the psbA gene, a deletion of 79 bp in the intergenic region between rpl33 and rps18 genes and a deletion of 45 bp in the rps3 gene. In the present investigation, we analyzed direct repeats located at the borders of those four large indels. Furthermore, we investigated the consequences of protein expression of large indels located in coding regions. The deletion of 620 bp in the psbA gene was lethal at the second leaf stage when homoplastomic. The deletion of 45 bp in the rps3 gene, which eliminates 15 amino acids, did not affect the viability of the seedlings in homoplastomy. Interestingly, the deleted segment is also lacking in the wild type version of the rps3 gene of maize and sorghum. The presence of direct repeats at the borders of the four large indels suggests that they could have originated by illegitimate recombination. This would be in agreement with a previous hypothesis that the Cpm gene product would correspond to a mismatch repair (MMR) protein devoted to maintain plastome stability by playing fundamental roles in mismatch repair during replication and avoiding illegitimate recombination.

Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Yasumasa Tsukamoto ◽  
Jun-ichi Kato ◽  
Hideo Ikeda

Abstract To examine the mechanism of illegitimate recombination in Saccharomyces cerevisiae, we have developed a plasmid system for quantitative analysis of deletion formation. A can1 cyh2 cell carrying two negative selection markers, the CAN1 and CYH2 genes, on a YCp plasmid is sensitive to canavanine and cycloheximide, but the cell becomes resistant to both drugs when the plasmid has a deletion over the CAN1 and CYH2 genes. Structural analysis of the recombinant plasmids obtained from the resistant cells showed that the plasmids had deletions at various sites of the CAN1-CYH2 region and there were only short regions of homology (1-5 bp) at the recombination junctions. The results indicated that the deletion detected in this system were formed by illegitimate recombination. Study on the effect of several rad mutations showed that the recombination rate was reduced by 30-, 10-, 10-, and 10-fold in the rad52, rad50, mre11, and xrs2 mutants, respectively, while in the rud51, 54, 55, and 57 mutants, the rate was comparable to that in the wild-type strain. The rad52 mutation did not affect length of homology at junction sites of illegitimate recombination.


2021 ◽  
Vol 7 (3) ◽  
pp. 47
Author(s):  
Marios Lange ◽  
Rodiola Begolli ◽  
Antonis Giakountis

The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2021 ◽  
Vol 70 (12) ◽  
Author(s):  
Letícia T. Oliveira ◽  
Lívia A. Alves ◽  
Erika N. Harth-Chu ◽  
Ryota Nomura ◽  
Kazuhiko Nakano ◽  
...  

Introduction. Streptococcus mutans , a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections. Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR. Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes. Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159. Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains. Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Kristen Drucker ◽  
Connor Yanchus ◽  
Thomas Kollmeyer ◽  
Asma Ali ◽  
Decker Paul ◽  
...  

Abstract BACKGROUND Determination of the causation of germline single nucleotide polymorphisms (SNPs) located in non-coding regions of the genome is challenging. The genomic region of 8q24 has been identified as important in many kinds of cancer, linked to a topologically associated domain (TAD) encompassing MYC; this TAD contains a GWAS SNP (rs55705857) associated with IDH-mutant glioma. METHODS Germline genotyping data from 622 IDH-mutant glioma and 668 controls were used to fine map the rs55705857 locus by detailed haplotype analysis. Chromatin immunoprecipitation sequencing (ChIP-seq) of histone markers H3K4me1, H3K4me3, H3K27ac and H3K36me3 was performed on normal brain samples (n=8) and human glioma samples (n=11 IDH-wt and 52 IDH-mut). RNAseq from 9 normal and 83 brain tumors (n=26 IDH-wt and 55 IDH-mut) were used to assess differential gene expression. RESULTS Fine-mapping identified rs55705857 SNP as the most likely causative allele (OR=8.69; p&lt;0.001) within 8q24 for the development of IDH-mutant glioma. At rs55705857, both H3K27ac and H3K4me1 in IDH-mutant vs IDH-wt tumors were increased 3.05- and 1.58-fold, respectively (DiffBind; p=5.81×10-7 and p=2.31×10-3). ChromHMM analysis of the marks indicated that promoter and enhancer functions were significantly increased, and the activity broadened at rs55705857 in IDH-mut gliomas compared to IDH-wt tumors and normal brain samples. This enhancement correlated with significant increased MYC expression in IDH-mut gliomas (p=3.1×10-13), as well as alterations of Myc signaling targets. Publicly available ATACseq, ChIPseq and long-range DNA interaction data demonstrated that the rs55705857 locus is open and interacts with the MYC promoter. CONCLUSIONS Fine-mapping of the 8q24 locus provided strong evidence that rs55705857 is the causative 8q24 locus associated with IDH-mut glioma. Functional experiments suggest that IDH mutation facilitates rs55705857 interaction with MYC to alter downstream MYC targets.


1994 ◽  
Vol 14 (9) ◽  
pp. 6171-6179 ◽  
Author(s):  
N R Sturm ◽  
R Kuras ◽  
S Büschlen ◽  
W Sakamoto ◽  
K L Kindle ◽  
...  

FUD6, a nonphotosynthetic mutant of Chlamydomonas reinhardtii, was previously found to be deficient in the synthesis of subunit IV of the cytochrome b6/f complex, the chloroplast petD gene product (C. Lemaire, J. Girard-Bascou, F.-A. Wollman, and P. Bennoun, Biochim. Biophys. Acta 851:229-238, 1986). The lesion in FUD6 is a 236-bp deletion between two 11-bp direct repeats in the chloroplast genome. It extends from 82 to 72 bp upstream of the 5' end of wild-type petD mRNA to 156 to 166 bp downstream of the 5' end. Thus, the deletion extends into the putative promoter and 5' untranslated region of petD. No petD mRNA of the normal size can be detected in FUD6 cells, but a low level of a dicistronic message accumulates, which contains the coding regions for subunit IV and cytochrome f, the product of the upstream petA gene. petD transcriptional activity in FUD6 is not significantly altered from the wild-type level. This transcriptional activity was eliminated by petA promoter disruptions, suggesting that it originates at the petA promoter. We conclude that the petD-coding portion of most cotranscripts is rapidly degraded in FUD6, possibly following processing events that generate the 3' end of petA mRNA. A chloroplast transformant was constructed in which only the sequence from -81 to -2 relative to the major 5' end of the petD transcript was deleted. Although this deletion eliminates all detectable petD promoter activity, the transformant grows phototrophically and accumulates high levels of monocistronic petD mRNA. We conclude that the petD gene can be transcribed by functionally redundant promoters. In the absence of a functional petD promoter, a lack of transcription termination allows the downstream petD gene to be cotranscribed with the petA coding region and thereby expressed efficiently.


2020 ◽  
Vol 29 (R2) ◽  
pp. R197-R204 ◽  
Author(s):  
Adi Danieli ◽  
Argyris Papantonis

Abstract Human chromosomes are large spatially and hierarchically structured entities, the integrity of which needs to be preserved throughout the lifespan of the cell and in conjunction with cell cycle progression. Preservation of chromosomal structure is important for proper deployment of cell type-specific gene expression programs. Thus, aberrations in the integrity and structure of chromosomes will predictably lead to disease, including cancer. Here, we provide an updated standpoint with respect to chromatin misfolding and the emergence of various cancer types. We discuss recent studies implicating the disruption of topologically associating domains, switching between active and inactive compartments, rewiring of promoter–enhancer interactions in malignancy as well as the effects of single nucleotide polymorphisms in non-coding regions involved in long-range regulatory interactions. In light of these findings, we argue that chromosome conformation studies may now also be useful for patient diagnosis and drug target discovery.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Sezai Türkel

Ty3 is a retroviral-like element and propagates with a retroviral-like mechanism within the yeast cells. Ty3 mRNA contains two coding regions, which are GAG3 and POL3. The coding region POL3 is translated as a GAG3-POL3 fusion protein by a +1 programmed frameshift. In this study, it was shown that the Ty3 frameshift frequency is significantly increased by amino acid starvation in a Gcn2p complex dependent manner. When the yeast cells were subjected to amino acid starvation, the frameshift frequency of Ty3 increased more than 2-fold in the wild-type yeast cells, mostly independent of Gcn4p. However, Ty3 frameshift frequency remained at basal level in the gcn1, gcn20, or gcn2 mutant yeast cells in amino acid starved yeasts. Gcn1p forms a complex with Gcn2p and Gcn20p and is involved in the sensing of uncharged tRNAs on the ribosomal A-site during translation. Increases in uncharged tRNA levels due to amino acid depletion lead to ribosomal pauses. These ribosomal pauses are significant actors in the regulation of Ty3 frameshift frequency. Results of this research revealed that frameshift frequency in Ty3 is regulated by the Gcn2p complex in response to amino acid starvation in yeast.


Genome ◽  
2000 ◽  
Vol 43 (4) ◽  
pp. 634-641 ◽  
Author(s):  
T HM Mes ◽  
P Kuperus ◽  
J Kirschner ◽  
J Stepanek ◽  
P Oosterveld ◽  
...  

Sequence variation in 2.2 kb of non-coding regions of the chloroplast genome of eight dandelions (Taraxacum: Lactuceae) from Asia and Europe is interpreted in the light of the phylogenetic signal of base substitutions vs. indels (insertions-deletions). The four non-coding regions displayed a total of approximately 30 structural mutations of which 9 are potentially phylogenetically informative. Insertions, deletions, and an inversion were found that involved consecutive stretches of up to 172 bases. When compared to phylogenetic relationships of the chloroplast genomes based on nucleotide substitutions only, many homoplasious indels (33%) were detected that differed considerably in length and did not comprise simple sequence repeats typically associated with replication slippage. Though many indels in the intergenic spacers were associated with direct repeats, frequently, the variable stretches participated in inverted repeat stabilized hairpins. In each intergenic spacer or intron examined, nucleotide stretches ranging from 30 to 60 bp were able to fold into stabilized secondary structures. When these indels were homoplasious, they always ranked among the most stabilized hairpins in the non-coding regions. The association of higher order structures that involve both classes of repeats and parallel structural mutations in hot spot regions of the chloroplast genome can be used to differentiate among mutations that differ in phylogenetic reliability.Key words: Taraxacum, indel, non-coding chloroplast DNA, hairpin, evolution.


2016 ◽  
Vol 38 (4) ◽  
pp. 325-329 ◽  
Author(s):  
Jose Navarro-Partida ◽  
Beatriz Alvarado Castillo ◽  
Abril Bernardette Martinez-Rizo ◽  
Ramses Rosales-Diaz ◽  
Jesus Bernardino Velazquez-Fernandez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document