scholarly journals Cryo-EM study on the homo-oligomeric ring formation of yeast TRiC/CCT subunits reveals TRiC ring assembly mechanism

2021 ◽  
Author(s):  
Caixuan Liu ◽  
Huping Wang ◽  
Mingliang Jin ◽  
Wenyu Han ◽  
Shutian Wang ◽  
...  

AbstractThe complex eukaryotic chaperonin TRiC/CCT helps maintain cellular protein homeostasis, however, its assembly mechanism remains largely unknown. To address the subunit specificity in TRiC assembly, we express each of the individual yeast TRiC subunit in E. coli. Our cryo-EM structural study and biochemical analyses demonstrate that CCT1/2/6 can form TRiC-like homo-oligomeric double ring (HR) complex, however ATP-hydrolysis cannot trigger their ring closure; after deletion of the long N-terminal extension, CCT5 can form the closed double-ring structure; while CCT3/4/7/8 cannot form the HRs. It appears that CCT1 forms a HR in a unique spiral configuration, and ATP-hydrolysis can drive it to re-assemble with an inserted extra subunit-pair. Our data suggest that CCT5 could be the leading subunit in ATP-hydrolysis-driven TRiC ring closure. Moreover, we demonstrate that ADP is sufficient to trigger the assembly of the HRs and TRiC from the assembly intermediate micro-complex form. Our study reveals that through evolution, the more ancestral subunits may have evolved to take more responsibilities in TRiC ring assembly, and we propose a possible assembly mechanism of TRiC involving subunit-pair insertion. Collectively, our study gives hints on the structural basis of subunit specificity in TRiC assembly and cooperativity, beneficial for future TRiC-related therapeutic strategy development.

2021 ◽  
Vol 22 (9) ◽  
pp. 4519
Author(s):  
Chihong Song ◽  
Tadashi Satoh ◽  
Taichiro Sekiguchi ◽  
Koichi Kato ◽  
Kazuyoshi Murata

The 20S proteasome, which is composed of layered α and β heptameric rings, is the core complex of the eukaryotic proteasome involved in proteolysis. The α7 subunit is a component of the α ring, and it self-assembles into a homo-tetradecamer consisting of two layers of α7 heptameric rings. However, the structure of the α7 double ring in solution has not been fully elucidated. We applied cryo-electron microscopy to delineate the structure of the α7 double ring in solution, revealing a structure different from the previously reported crystallographic model. The D7-symmetrical double ring was stacked with a 15° clockwise twist and a separation of 3 Å between the two rings. Two more conformations, dislocated and fully open, were also identified. Our observations suggest that the α7 double-ring structure fluctuates considerably in solution, allowing for the insertion of homologous α subunits, finally converting to the hetero-heptameric α rings in the 20S proteasome.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1318 ◽  
Author(s):  
Nicholas Bodnar ◽  
Tom Rapoport

A conserved AAA+ ATPase, called Cdc48 in yeast and p97 or VCP in metazoans, plays an essential role in many cellular processes by segregating polyubiquitinated proteins from complexes or membranes. For example, in endoplasmic reticulum (ER)-associated protein degradation (ERAD), Cdc48/p97 pulls polyubiquitinated, misfolded proteins out of the ER and transfers them to the proteasome. Cdc48/p97 consists of an N-terminal domain and two ATPase domains (D1 and D2). Six Cdc48 monomers form a double-ring structure surrounding a central pore. Cdc48/p97 cooperates with a number of different cofactors, which bind either to the N-terminal domain or to the C-terminal tail. The mechanism of Cdc48/p97 action is poorly understood, despite its critical role in many cellular systems. Recent in vitro experiments using yeast Cdc48 and its heterodimeric cofactor Ufd1/Npl4 (UN) have resulted in novel mechanistic insight. After interaction of the substrate-attached polyubiquitin chain with UN, Cdc48 uses ATP hydrolysis in the D2 domain to move the polypeptide through its central pore, thereby unfolding the substrate. ATP hydrolysis in the D1 domain is involved in substrate release from the Cdc48 complex, which requires the cooperation of the ATPase with a deubiquitinase (DUB). Surprisingly, the DUB does not completely remove all ubiquitin molecules; the remaining oligoubiquitin chain is also translocated through the pore. Cdc48 action bears similarities to the translocation mechanisms employed by bacterial AAA ATPases and the eukaryotic 19S subunit of the proteasome, but differs significantly from that of a related type II ATPase, the NEM-sensitive fusion protein (NSF). Many questions about Cdc48/p97 remain unanswered, including how it handles well-folded substrate proteins, how it passes substrates to the proteasome, and how various cofactors modify substrates and regulate its function.


2020 ◽  
Author(s):  
Andreas Bracher ◽  
Simanta S. Paul ◽  
Huping Wang ◽  
Nadine Wischnewski ◽  
F. Ulrich Hartl ◽  
...  

AbstractChaperonins are ubiquitous molecular chaperones found in all domains of life. They form ring-shaped complexes that assist in the folding of substrate proteins in an ATP-dependent reaction cycle. Key to the folding cycle is the transient encapsulation of substrate proteins by the chaperonin. Here we present a structural and functional characterization of the chaperonin gp146 (ɸEL) from the phage EL of Pseudomonas aeruginosa. ɸEL, an evolutionary distant homolog of bacterial GroEL, is active in ATP hydrolysis and prevents the aggregation of denatured protein in a nucleotide-dependent manner. However, ɸEL failed to refold the encapsulation-dependent model substrate rhodanese and did not interact with E. coli GroES, the lid-shaped co-chaperone of GroEL. ɸEL forms tetradecameric double-ring complexes, which dissociate into single rings in the presence of ATP. Crystal structures of ɸEL (at 3.54 and 4.03 Å) in presence of ATP•BeFx revealed two distinct single-ring conformational states, both with open access to the ring cavity. One state showed uniform ATP-bound subunit conformations (symmetric state), whereas the second combined distinct ATP- and ADP-bound subunit conformations (asymmetric state). Cryo-electron microscopy of apo-ɸEL revealed a double-ring structure composed of rings in the asymmetric state (3.45 Å resolution). We propose that the phage chaperonin undergoes nucleotide-dependent conformational switching between double- and single rings and functions in aggregation prevention without substrate protein encapsulation. Thus, ɸEL may represent an evolutionary more ancient chaperonin prior to acquisition of the encapsulation mechanism.


2008 ◽  
Vol 183 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Yinyi Huang ◽  
Hongyan Yan ◽  
Mohan K. Balasubramanian

Cytokinesis in many eukaryotes depends on the function of an actomyosin contractile ring. The mechanisms regulating assembly and positioning of this ring are not fully understood. The fission yeast Schizosaccharomyces pombe divides using an actomyosin ring and is an attractive organism for the study of cytokinesis. Recent studies in S. pombe (Wu, J.Q., V. Sirotkin, D.R. Kovar, M. Lord, C.C. Beltzner, J.R. Kuhn, and T.D. Pollard. 2006. J. Cell Biol. 174:391–402; Vavylonis, D., J.Q. Wu, S. Hao, B. O'Shaughnessy, and T.D. Pollard. 2008. Science. 319:97–100) have suggested that the assembly of the actomyosin ring is initiated from a series of cortical nodes containing several components of this ring. These studies have proposed that actomyosin interactions bring together the cortical nodes to form a compacted ring structure. In this study, we test this model in cells that are unable to assemble cortical nodes. Although the cortical nodes play a role in the timing of ring assembly, we find that they are dispensable for the assembly of orthogonal actomyosin rings. Thus, a mechanism that is independent of cortical nodes is sufficient for the assembly of normal actomyosin rings.


1977 ◽  
Vol 16 (8) ◽  
pp. 549-550 ◽  
Author(s):  
Alfred Schmidpeter ◽  
Josef Helmut Weinmaier ◽  
Elmar Glaser
Keyword(s):  

2006 ◽  
Vol 26 (22) ◽  
pp. 8385-8395 ◽  
Author(s):  
Patricija Hawle ◽  
Martin Siepmann ◽  
Anja Harst ◽  
Marco Siderius ◽  
H. Peter Reusch ◽  
...  

ABSTRACT The mechanism of client protein activation by Hsp90 is enigmatic, and it is uncertain whether Hsp90 employs a common route for all proteins. Using a mutational analysis approach, we investigated the activation of two types of client proteins, glucocorticoid receptor (GR) and the kinase v-Src by the middle domain of Hsp90 (Hsp90M) in vivo. Remarkably, the overall cellular activity of v-Src was highly elevated in a W300A mutant yeast strain due to a 10-fold increase in cellular protein levels of the kinase. In contrast, the cellular activity of GR remained almost unaffected by the W300A mutation but was dramatically sensitive to S485Y and T525I exchanges. In addition, we show that mutations S485Y and T525I in Hsp90M reduce the ATP hydrolysis rate, suggesting that Hsp90 ATPase is more tightly regulated than assumed previously. Therefore, the activation of GR and v-Src has various demands on Hsp90 biochemistry and is dependent on separate functional regions of Hsp90M. Thus, Hsp90M seems to discriminate between different substrate types and to adjust the molecular chaperone for proper substrate activation.


2019 ◽  
Author(s):  
Nikolaus Goessweiner-Mohr ◽  
Vadim Kotov ◽  
Matthias J. Brunner ◽  
Julia Mayr ◽  
Jiri Wald ◽  
...  

AbstractFunctional injectisomes of the type-3 secretion system assemble into highly defined and stoichiometric bacterial molecular machines essential for infecting human and other eukaryotic cells. However, the mechanism that governs the regulated step-wise assembly process from the nucleation-phase, to ring-assembly, and the filamentous phase into a membrane embedded needle complex is unclear. We here report that the formation of a megadalton-sized needle complexes from Salmonella enterica serovar Typhimurium (SPI-1, Salmonella pathogenicity island-1) with proper stoichiometries is highly structurally controlled competing against the self-assembly propensity of injectisome components, leading to a highly unusual structurally-pleiotropic phenotype. The structure of the entire needle complex from pathogenic injectisomes was solved by cryo electron microscopy, focused refinements (2.5-4 Å) and co-variation analysis revealing an overall asymmetric arrangement containing cyclic, helical, and asymmetric sub-structures. The centrally located export apparatus assembles into a conical, pseudo-helical structure and provides a structural template that guides the formation of a 24-mer cyclic, surrounding ring, which then serves as a docking interface comprising three different conformations for sixteen N-terminal InvG subunits of the outer secretin ring. Unexpectedly, the secretin ring excludes the 16th protein chain at the C-terminal outer ring, resulting in a pleiotropic 16/15-mer ring and consequently to an overall 24:16/15 basal body structure. Finally, we report how the transition from the pseudo-helical export apparatus into the helical filament is structurally resolved to generate the protein secretion channel, which provides the structural basis to restrict access of unfolded effector substrates. These results highlight the diverse molecular signatures required for a highly coordinated assembly process and provide the molecular basis for understanding triggering and transport of unfolded proteins through injectisomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sean P. Carney ◽  
Wen Ma ◽  
Kevin D. Whitley ◽  
Haifeng Jia ◽  
Timothy M. Lohman ◽  
...  

AbstractUvrD, a model for non-hexameric Superfamily 1 helicases, utilizes ATP hydrolysis to translocate stepwise along single-stranded DNA and unwind the duplex. Previous estimates of its step size have been indirect, and a consensus on its stepping mechanism is lacking. To dissect the mechanism underlying DNA unwinding, we use optical tweezers to measure directly the stepping behavior of UvrD as it processes a DNA hairpin and show that UvrD exhibits a variable step size averaging ~3 base pairs. Analyzing stepping kinetics across ATP reveals the type and number of catalytic events that occur with different step sizes. These single-molecule data reveal a mechanism in which UvrD moves one base pair at a time but sequesters the nascent single strands, releasing them non-uniformly after a variable number of catalytic cycles. Molecular dynamics simulations point to a structural basis for this behavior, identifying the protein-DNA interactions responsible for strand sequestration. Based on structural and sequence alignment data, we propose that this stepping mechanism may be conserved among other non-hexameric helicases.


Sign in / Sign up

Export Citation Format

Share Document