scholarly journals AN INTEGRATIVE APPROACH DISCOVERS A NOVEL ANTI-LEUKEMIC PEPTIDE FROM HUMAN MILK

2021 ◽  
Author(s):  
Wararat Chiangjong ◽  
Jirawan Panachan ◽  
Thitinee Vanichapol ◽  
Nutkridta Pongsakul ◽  
Tassanee Lerksuthirat ◽  
...  

AbstractChemotherapy in childhood leukemia is associated with late morbidity in leukemic survivors, while certain patient subsets relatively resistant to standard chemotherapy. Identifying new agents with the sensitivity and selectivity toward leukemic cells with less systemic toxicity is a warrant. Peptide-based therapeutics is gaining attention during the last few years. Here, we used an integrative workflow combining mass spectrometric peptide library construction, in silico anticancer peptide screening, and in vitro leukemic cell studies to discover a novel anti-leukemic peptide owning 3+charges and alpha-helical structure, namely HMP-S7, from human breast milk. HMP-S7 showed cytotoxic activity against four distinct leukemic cell lines in a dose-dependent manner but had no affected on solid malignancies or representative normal cells. HMP-S7 induced leukemic cell death by penetrating the plasma membrane into the cytoplasm, causing lactate dehydrogenase leakage, thereby defining membranolytic action. In conclusion, HMP-S7 is the selective anti-leukemic peptide promising for further validation in preclinical and clinical studies.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 981
Author(s):  
Wararat Chiangjong ◽  
Jirawan Panachan ◽  
Thitinee Vanichapol ◽  
Nutkridta Pongsakul ◽  
Pongpak Pongphitcha ◽  
...  

Chemotherapy in childhood leukemia is associated with late morbidity in leukemic survivors, while certain patient subsets are relatively resistant to standard chemotherapy. It is therefore important to identify new agents with sensitivity and selectivity towards leukemic cells, while having less systemic toxicity. Peptide-based therapeutics has gained a great deal of attention during the last few years. Here, we used an integrative workflow combining mass spectrometric peptide library construction, in silico anticancer peptide screening, and in vitro leukemic cell studies to discover a novel anti-leukemic peptide having 3+ charges and an alpha helical structure, namely HMP-S7, from human breast milk. HMP-S7 showed cytotoxic activity against four distinct leukemic cell lines in a dose-dependent manner but had no effect on solid malignancies or representative normal cells. HMP-S7 induced leukemic cell death by penetrating the plasma membrane to enter the cytoplasm and cause the leakage of lactate dehydrogenase, thus acting in a membranolytic manner. Importantly, HMP-S7 exhibited anti-leukemic effects against patient-derived leukemic cells ex vivo. In conclusion, HMP-S7 is a selective anti-leukemic peptide with promise, which requires further validation in preclinical and clinical studies.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1427-1434 ◽  
Author(s):  
Ivan N. Rich ◽  
Diana Worthington-White ◽  
Oliver A. Garden ◽  
Philip Musk

The Na+/H+ exchanger isoform 1 (NHE1) is primarily responsible for the regulation of intracellular pH (pHi). It is a ubiquitous, amiloride-sensitive, growth factor–activatable exchanger whose role has been implicated in cell-cycle regulation, apoptosis, and neoplasia. Here we demonstrate that leukemic cell lines and peripheral blood from primary patient leukemic samples exhibit a constitutively and statistically higher pHi than normal hematopoietic tissue. We then show that a direct correlation exists between pHi and cell-cycle status of normal hematopoietic and leukemic cells. Advantage was taken of this relationship by treating leukemic cells with the Na+/H+ exchanger inhibitor, 5-(N, N-hexamethylene)-amiloride (HMA), which decreases the pHiand induces apoptosis. By incubating patient leukemic cells in vitro with pharmacologic doses of HMA for up to 5 hours, we show, using flow cytometry and fluorescent ratio imaging microscopy, that when the pHi decreases, apoptosis—measured by annexin-V and TUNEL methodologies—rapidly increases so that more than 90% of the leukemic cells are killed. The differential sensitivity exhibited between normal and leukemic cells allows consideration of NHE1 inhibitors as potential antileukemic agents.


Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1237-1245 ◽  
Author(s):  
G Manfioletti ◽  
V Gattei ◽  
E Buratti ◽  
A Rustighi ◽  
A De Iuliis ◽  
...  

Proline-rich homeobox (Prh) is a novel human homeobox-containing gene recently isolated from the CD34+ cell line KG-1A, and whose expression appears mainly restricted to hematopoietic tissues. To define the pattern of Prh expression within the human hematopoietic system, we have analyzed its constitutive expression in purified cells obtained from normal hematopoietic tissues, its levels of transcription in a number of leukemia/lymphoma cell lines representing different lineages and stages of hematolymphopoietic differentiation, and its regulation during in vitro maturation of human leukemic cell lines. Prh transcripts were not detected in leukemic cells of T-lymphoid lineage, irrespective of their maturation stage, and in resting or activated normal T cells from peripheral blood and lymphoid tissues. In contrast, high levels of Prh expression were shown in cells representing early stages of B lymphoid maturation, being maintained up to the level of circulating and tissue mature B cells. Terminal B-cell differentiation appeared to be conversely associated with the deactivation of the gene, since preplasmacytic and plasmocytoma cell lines were found not to express Prh mRNA. Prh transcripts were also shown in human cell lines of early myelomonocytic, erythromegakaryocytic, and preosteoclast phenotypes. Prh expression was lost upon in vitro differentiation of leukemic cell lines into mature monocyte-macrophages and megakaryocytes, whereas it was maintained or upregulated after induction of maturation to granulocytes and osteoclasts. Accordingly, circulating normal monocytes did not display Prh mRNA, which was conversely detected at high levels in purified normal granulocytes. Our data, which show that the acquisition of the differentiated phenotype is associated to Prh downregulation in certain hematopoietic cells but not in others, also suggest that a dysregulated expression of this gene might contribute to the process of leukemogenesis within specific cell lineages.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4493-4493 ◽  
Author(s):  
Yoshihiro Hatta ◽  
Minoru Saiki ◽  
Yuko Enomoto ◽  
Shin Aizawa ◽  
Umihiko Sawada ◽  
...  

Abstract Troglitazone and pioglitazone are one of thiazolidinediones that are high affinity ligand for the nuclear receptor called peroxisome proliferator-activated receptor gamma (PPAR-γ). Troglitazone is a potent inhibitor of clonogenic growth of acute myeloid leukemia cells when combined with a retinoid. However, the effect of pioglitazone to neoplastic cells and normal hematopoietic cells has not been studied yet. Adult T-cell leukemia (ATL), prevalent in western Japan, is a highly aggressive malignancy of mature T lymphocyte. Therefore, we studied antitumor effect of pioglitazone against leukemic cells including ATL as well as normal hematopoietic cells. With 300 μM of pioglitazone, colony formation of ATL cell lines (MT1, MT2, F6T, OKM3T, and Su9T01) was completely inhibited. Colony formation of HUT102, another ATL cell line, was 12 % compared to untreated control. Clonogenic cells of other leukemic cell lines (K562, HL60, U937, HEL, CEM, and NALM1) was also inhibited to 0–30% of control. Colony formation of primary leukemic cells from 5 AML patients was decreased to 15 %. However, normal hematopoietic cells were weakly inhibited with 300 μM pioglitazone; 77 % of CFU-GM, 70 % of CFU-E, and 33 % of BFU-E survived. Cell cycle analysis showed that pioglitazone decreased the ratio of G2/M phase in HL60 cells, suggesting the inhibition of cell division. By Western blotting, PPAR-γ protein level was similar in all leukemic cells and normal bone marrow mononuclear cells. Taken together, pioglitazone effectively eliminate leukemic cells and could be used as an antitumor agent in vivo.


2004 ◽  
Vol 32 (05) ◽  
pp. 717-725 ◽  
Author(s):  
Jung-San Chang ◽  
Lien-Chai Chiang ◽  
Fen-Fang Hsu ◽  
Chun-Ching Lin

The water extracts of Cornus officinalis Sieb. et Zuce against hepatocellular carcinoma (HCC) was studied for its chemopreventive potential. Three HCC cell lines (HepG2, SK-Hep1 and PLC/PRF/5) and three leukemic cell lines (U937, K562 and Raji) were tested with XTT assay. Extracts of C. officinalis inhibited all these HCC cells and leukemic cells at a concentration of 100 μg/ml (P<0.05) and was dose-dependent (P<0.0001). P53 (P<0.0001) and Ras (P=0.001) significantly affected its activity against HCC. Extracts of C. officinalis also possessed the anti-oxidant activity through free radicals scavenging activity at a concentration of 50 μg/ml (P<0.05). In summary, our experiment implied that C. officinalis might be a candidate for chemopreventive agent against HCC through the antioxidant and anti-neoplastic effects.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5785
Author(s):  
Fah Chueahongthong ◽  
Singkome Tima ◽  
Sawitree Chiampanichayakul ◽  
Cory Berkland ◽  
Songyot Anuchapreeda

This study aims to enhance efficacy and reduce toxicity of the combination treatment of a drug and curcumin (Cur) on leukemic stem cell and leukemic cell lines, including KG-1a and KG-1 (FLT3+ LSCs), EoL-1 (FLT3+ LCs), and U937 (FLT3− LCs). The cytotoxicity of co-treatments of doxorubicin (Dox) or idarubicin (Ida) at concentrations of the IC10–IC80 values and each concentration of Cur at the IC20, IC30, IC40, and IC50 values (conditions 1, 2, 3, and 4) was determined by MTT assays. Dox–Cur increased cytotoxicity in leukemic cells. Dox–Cur co-treatment showed additive and synergistic effects in several conditions. The effect of this co-treatment on FLT3 expression in KG-1a, KG-1, and EoL-1 cells was examined by Western blotting. Dox–Cur decreased FLT3 protein levels and total cell numbers in all the cell lines in a dose-dependent manner. In summary, this study exhibits a novel report of Dox–Cur co-treatment in both enhancing cytotoxicity of Dox and inhibiting cell proliferation via FLT3 protein expression in leukemia stem cells and leukemic cells. This is the option of leukemia treatment with reducing side effects of chemotherapeutic drugs to leukemia patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4405-4405
Author(s):  
Laura M. Gorham ◽  
Gigi Frye ◽  
Michelle Miranda ◽  
Richard A. Steinman

Abstract Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has been shown to inhibit the growth of prostate cancer cells in vitro and in vivo. We were interested in exploring potential antileukemic effects of SFN. The viability of multiple myeloid leukemic cell lines was decreased by 25uM SFN. Pharmacokinetic studies reported in rats suggest that this serum concentration can be achieved through oral dosing. Lower SFN concentrations (1–5 uM) inhibited leukemic cell growth without affecting cell viability. Synchronized HL-60 cells exposed to 25uM SFN were blocked at the G1/S phase transition. Kinetic analysis of cell cycle proteins demonstrated that the G1/S block arose from downmodulation of cyclins D3 and E rather than upregulation of cdk-inhibitors. Interestingly, we found that HL-60 cells expressed a low molecular weight (LMW, 36 kD) variant of cyclin E rather than (50 kD) full-length cyclin E. Treatment with SFN for as little as 2 hours caused a decrease in expression of the LMW cyclin E and induced the expression of a higher molecular weight (~50 kD) cyclin E isoform. Because LMW cyclin E has been associated with increased cdk2 activity and p27 resistance compared to full-length cyclin E, we postulate that SFN-mediated cyclin E isoform-switching contributed to growth inhibition of these leukemic cells. The signaling pathway through which SFN altered cyclin E expression appeared to be distinct from MEK/ERK and JNK pathways that have been implicated in the apoptotic effects of SFN. Given that cyclin E overexpression and, particularly, LMW cyclin E expression are correlated with poor prognosis in multiple cancers, the mechanism through which SFN decreases LMW cyclin E expression in these leukemic cells could have therapeutic significance.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2601-2601
Author(s):  
Sarah Scotland ◽  
Estelle Saland ◽  
Lindsay Peyriga ◽  
Rémi Peyraud ◽  
Elizabeth Micklow ◽  
...  

Abstract Abstract 2601 An emerging hallmark of cancer cells is the reprogramming of intermediary and energy metabolism these cells undergo. Several epidemiological studies have shown that metformin, widely used to treat patients with type 2 diabetes, may reduce their risk of cancer. Despite several reports of anti-neoplastic activity of metformin, the mechanisms responsible for this activity have not been fully elucidated in cancer or leukemic cells. We hypothesized that metformin elicits a metabolic reprogramming driven by alterations in mitochondrial function and signaling, which induces apoptosis in leukemic cells, and that metabolic flexibility determines the variation(s) of the cytotoxic response to metformin among different leukemic cell lines. We first demonstrated that metformin markedly decreased oxygen consumption of six leukemic cell lines in a concentration-dependent manner. We also observed that the cytotoxic effect of metformin varies between cell lines reflecting their energetic capacity to compensate for the mitochondrial inhibition induced by metformin (eg. to induce the Pasteur effect). Importantly, metformin-insensitive leukemic cells did not exhibit a Pasteur effect in response to metformin. All leukemic cells exhibited high basal conversion of glucose to lactate (eg. aerobic glycolysis) and specific expression of key metabolic genes as compared to normal mononuclear cells. Despite dependence on glucose catabolism, metformin sensitivity was associated with relative resistance to glucose starvation. Metformin effects in drug-resistant cells were potentiated by the addition of a glycolytic inhibitor, but not by inhibitors of the pentose phosphate pathway or glutaminolysis. Leukemic cells with broad metabolic capacities to utilize other energetic substrates in response to diverse nutrient starvation showed insensitivity to metformin. Metformin induced a significant decrease in metabolites of the upper segment of glycolysis and the oxidative branch of the pentose phosphate pathway as well as a clear increase of PRPP and IMP biosynthesis. Energy charge, the nucleotide phosphate pool and lactate/glucose ratio remained stable after metformin treatment. Furthermore, our results showed that basal glucose uptake/consumption and the activity of the lower segment of the glycolytic pathway are key determinants of a cytotoxic response to metformin. In addition, high glutathione, malate, IMP and orotate content were observed in metformin-insensitive leukemic cells. Moreover, the cytotoxic effect of metformin was independent of AMPK/LKB1 status of the leukemic cells while p53 expression abrogated this effect. The presence of wild-type p53 appears to partially protect tumor cells from glucose starvation and metformin cytotoxicity and prevents the induction of the Pasteur effect. Finally, we demonstrated that metformin increased the cytotoxicity of chemotherapy agent, cytarabine, on all leukemic cell lines in vitro and significantly reduced leukemic colony-forming units (CFU-L) from six primary AML patient samples in a concentration-dependent manner. Additional experiments on metabolic and signaling pathways as well as in vivo studies are in progress to better understand the cytotoxic response of metformin in both AML cell lines and primary AML patient specimens that impact the therapeutic potential of metformin in vivo. Disclosures: Carroll: Agios Pharmaceuticals: Research Funding; TetraLogic Pharmaceuticals: Research Funding; Sanofi Aventis Corporation: Research Funding; Glaxo Smith Kline, Inc.: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1359-1359 ◽  
Author(s):  
Silvia Arcangeli ◽  
Marco Bardelli ◽  
Sarah Tettamanti ◽  
Maria Caterina Rotiroti ◽  
Luca Simonelli ◽  
...  

Abstract In the last years, adoptive cellular immunotherapy employing T lymphocytes genetically modified with Chimeric Antigen Receptors (CARs) has demonstrated impressive clinical results, particularly in the treatment of acute/chronic lymphoblastic leukemia and B-cell lymphoma, paving the way towards the possibility to translate this approach also to other hematological malignancies, such as Acute Myeloid Leukemia (AML). In the AML context, the CD123 antigen (IL-3 receptor alpha subunit) represents a good target antigen, being a poor prognosis over-expressed marker on AML cells and leukemic stem cells (LSCs), a rare population that plays a key role in perpetuating leukemia. However, CD123 is also expressed on the surface of healthy cells such as monocytes and endothelial cells, although at lower levels as compared to leukemic cells. The potential recognition of low antigen positive healthy tissues by CAR-redirected T cells, through the so called "on-target-off-organ" effect, limits a safe clinical employment of this immunotherapeutic approach. CARs are artificial receptors generated by joining the cytoplasmic TCR (T Cell Receptor) signaling modules to the heavy and light chain variable regions of a monoclonal antibody, whose affinity toward a target antigen is a variable capable of influencing the CAR-mediated functional responses. Therefore, in our study we investigated how the CAR affinity variable in the context of CD123 targeting, together with the CAR and CD123 target antigen density, could impact anti-CD123. CAR-redirected effector cells efficacy against leukemic cells and safety towards the healthy cells. To this aim, Cytokine-Induced Killer (CIK) effector cells have been genetically modified with four Chimeric Affinity Mutants (CAMs), CAM-1, CAM-2, CAM-3 and CAM-4, identified by means of a computational docking technique. In vitro cytotoxic assays, cytokine production and proliferation experiments have been performed in order to evaluate both the efficacy and safety profile of the CAR-redirected CIK cells, using un-manipulated CIK cells (NO DNA) and wild-type anti-CD123.CAR condition as controls. The functional characterization of all the CAMs revealed both the specificity and the effectiveness of CIK-CAR+ cells against the CD123+ THP-1 cell line and primary AML cells. However we observed that, at least in the context of CD123 targeting, a good CAR expression level is necessary for inducing effective later functions, such as proliferation and cytokine production, towards a high CD123+ target. When introducing leukemic cell lines with different CD123 density on their surface we observed different effector properties minimally influenced by the CAR affinity. In particular, in terms of killing activity, we noticed that a number of ≈1600 CD123 molecules is sufficient to induce a good cytotoxic response of all the CARs tested, with the CAM-2 (2-magnitude log lower in affinity) being less powerful. At the same time, this antigen density is not enough to determine a good proliferative capability which instead occurs with leukemic target cells expressing 5000 or more CD123 molecules. Considering the cytokine production (IL-2 and IFN-gamma), we observed that all CIK-CAR+ cells showed a cytokine release that is directly proportional to the target antigen density, with CAM-2 showing a reduced response towards low-CD123 expressing leukemic targets. When analyzing the safety profile of the CAMs against low-CD123+ endothelial target cells (≈1600 molecule/cell), we observed a lower functional activity of the CAMs as compared to the leukemic cell lines expressing the same level of CD123 molecules on their surface, with the low-affinity CAM-2 showing a major sparing capability in terms of killing activity (being the only one not statistically different from NO DNA). In conclusion, exploiting our model of affinity mutants we were able to in vitro characterize the role of the CAR density balanced with the affinity of the anti-CD123.CAR towards AML cells expressing different CD123 levels and CD123-low expressing normal tissues. In particular, the results obtained with CAM-2 suggested a potential threshold of affinity below which, even if the safety profile is preserved, the anti-leukemic efficacy would be impaired. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (1) ◽  
pp. 49-54
Author(s):  
H Kodama ◽  
M Iizuka ◽  
T Tomiyama ◽  
K Yoshida ◽  
M Seki ◽  
...  

Some mouse myeloid leukemias induced by X-irradiation and serially transplanted into syngenic mice do not proliferate in vitro even in the presence of hematopoietic factors. To examine whether such leukemic cells can proliferate in response to stromal cells, we cocultured them with MC3T3-G2/PA6 (PA6) preadipocytes, cells that can support the growth of hematopoietic stem cells. All leukemias developed into in vitro cell lines, showing a dependence on contact with the PA6 cells. Two cell lines responded to none of the known hematopoietic factors including interleukin-3 (IL-3), IL-4, IL-5, IL-6, GM-CSF, G-CSF, M-CSF, and Epo. These results demonstrate that the mechanism of the action of PA6 cells is different from that of any of the known hematopoietic factors, and that, because these two leukemic cell lines retained the ability to grow in vivo, responsiveness to the known hematopoietic factors is not essential for the leukemic cell growth in vivo. Furthermore, all leukemic cell lines could respond also to the preadipocytes fixed with formalin, paraformaldehyde, or glutaraldehyde, suggesting that some molecule(s) associated with the surface of PA6 cells or with extracellular matrix secreted by the preadipocytes is responsible for the leukemic cell growth.


Sign in / Sign up

Export Citation Format

Share Document