scholarly journals A wing growth organizer in a hemimetabolous insect suggests wing origin

2021 ◽  
Author(s):  
Takahiro Ohde ◽  
Taro Mito ◽  
Teruyuki Niimi

ABSTRACTThe origin and evolution of insect wings remain enigmatic after a century-long discussion. Molecular dissection of wing development in hemimetabolous insects, in which the first functional wings evolved, is key to understand genetic changes required for wing evolution. We investigatedDrosophilawing marker genes in the cricket,Gryllus bimaculatus, and foundapterousandvestigialshow critical functions in nymphal tergal identity and margin formation, respectively. We further demonstrate that margin cells in the lateral-anterior tergal region constitute a growth organizer of wing blades. Transcriptome and RNAi analyses unveiled that Wnt, Fat-Dachsous, and Hippo pathways are involved in disproportional growth ofGrylluswings. Our data collectively support the idea that tergal margin cells of a wingless ancestor gave rise to the body wall extension required for evolution of the first powered flight.

2018 ◽  
Author(s):  
Heather S. Bruce ◽  
Nipam H. Patel

AbstractThe origin of insect wings has long been debated. Central to this debate is whether wings evolved from an epipod (outgrowth, e.g., a gill) on ancestral crustacean leg segments, or represent a novel outgrowth from the dorsal body wall that co-opted some of the genes used to pattern the epipods. To determine whether wings can be traced to ancestral, pre-insect structures, or arose by co-option, comparisons are necessary between insects and arthropods more representative of the ancestral state, where the hypothesized proximal leg region is not fused to the body wall. To do so, we examined the function of five leg patterning genes in the crustacean Parhyale hawaiensis and compared this to previous functional data from insects. By comparing gene knockout phenotypes of leg patterning genes in a crustacean with those of insects, we show that two ancestral crustacean leg segments were incorporated into the insect body, moving the leg’s epipod dorsally, up onto the back to form insect wings. Thus, our data shows that much of the body wall of insects, including the entire wing, is derived from these two ancestral proximal leg segments. This model explains all observations in favor of either the body wall origin or proximal leg origin of insect wings. Thus, our results show that insect wings are not novel structures, but instead evolved from existing, ancestral structures.One Sentence SummaryCRISPR-Cas9 knockout of leg gap genes in a crustacean reveals that insect wings are not novel structures, they evolved from crustacean leg segments


2019 ◽  
Author(s):  
Alexandra J. Patel ◽  
Thomas Matheson

ABSTRACTFor aimed limb movements to remain functional they must be adapted to developmental changes in body morphology and sensory-motor systems. Insects use their limbs to groom the body surface or to dislodge external stimuli, but they face the particular problem of adapting these movements to step-like changes in body morphology during metamorphosis or moulting. Locusts are hemimetabolous insects in which the imaginal moult to adulthood results in a sudden and dramatic allometric growth of the wings relative to the body and the legs. We show that, despite this, hind limb scratches aimed at mechanosensory stimuli on the wings remain targeted to appropriate locations after moulting. In juveniles, the tips of the wings extend less than half way along the abdomen, but in adults they extend well beyond the posterior end. Kinematic analyses were used to examine the scratching responses of juveniles (5th instars) and adults to touch of anterior (wing base) and posterior (distal abdomen) targets that develop isometrically, and to wing tip targets that are anterior in juveniles but posterior in adults. Juveniles reach the (anterior) wing tip with the distal tibia of the hind leg using anterior rotation of the thoraco-coxal and coxo-trochanteral (‘hip’) joints and flexion of the femoro-tibial (‘knee’) joint. Adults, however, reach the corresponding (but now posterior) wing tip using posterior rotation of the hip and extension of the knee, reflecting a different underlying motor pattern. This change in kinematics occurs immediately after the adult moult without learning, indicating that the switch is developmentally programmed.SUMMARY STATEMENTA developmentally programmed change in the scratching movements of locusts permits adult animals to aim their movements at new wing tip targets, without learning.


1997 ◽  
Vol 17 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Philippe Moerman ◽  
Chris Van Geet ◽  
Hugo Devlieger
Keyword(s):  

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 309-310
Author(s):  
Yan Huang ◽  
Saeed Ghnaimawi ◽  
Yongjie Wang ◽  
Shilei Zhang ◽  
Jamie Baum

Abstract Muscle-derived stem cells (MDSCs, or myoblasts) play an important role in myotubes regeneration. However, these cells can differentiate into adipocytes once exposed to EPA and DHA, which are highly suggested during pregnancy. The objective of this study aims at determining the effect of isolated EPA and DHA on C2C12 cells undergoing white and brown adipogenic differentiation. Confluent cultured cells were treated with white and brown adipocyte induction medium (WIM and BIM respectively) with 50µM EPA and 50µM DHA separately. DHA treated groups differentiated into white-like adipocyte by down-regulating the expression of myogenic genes such as MyoD, MyoG, and Mrf4; but promoted white adipocyte marker genes(P < 0.05). Moreover, cells treated with WIM and DHA exhibited a decrease in mitochondrial biogenesis through suppressing PGC1a and TFAM expression (P < 0.05). Also, DHA promoted the expression of lipolysis regulating genes. DHA impaired C2C12 cells browning through reducing the mitochondrial biogenesis by significantly suppressing the expression of COX7a1, PGC1a, and UCP3 genes (P < 0.05). DHA treated groups showed an increased accumulation of lipid droplets and suppressed maximal mitochondrial respiration and spare capacity. EPA treatment reduced myogenesis regulating genes (P < 0.05) but did not affect adipogenic genes (P >0.05). Likewise, EPA suppressed the expression of WAT signature genes (P < 0.05), indicating its antagonism to DHA. EPA and WIM treatment suppressed the expression of TFAM and PGC1a, but did not affect PGC1a protein level. Although mitochondrial biogenic gene expression was reduced in EPA and BIDM treated group, no changes in mitochondrial function were observed. EPA supplementation did not affect the differential route of C2C12 into brown adipocytes. To conclude, EPA and DHA may similarly affect the integrity of muscle tissue, but DHA is a potent adipogenic and lipogenic factor that can change the metabolic profile of the body by increasing intramuscular fat.


1985 ◽  
Vol 260 (22) ◽  
pp. 12228-12233 ◽  
Author(s):  
H Takahashi ◽  
H Komano ◽  
N Kawaguchi ◽  
N Kitamura ◽  
S Nakanishi ◽  
...  

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1611-1622 ◽  
Author(s):  
Go Shioi ◽  
Michinari Shoji ◽  
Masashi Nakamura ◽  
Takeshi Ishihara ◽  
Isao Katsura ◽  
...  

Abstract Using a pan-neuronal GFP marker, a morphological screen was performed to detect Caenorhabditis elegans larval lethal mutants with severely disorganized major nerve cords. We recovered and characterized 21 mutants that displayed displacement or detachment of the ventral nerve cord from the body wall (Ven: ventral cord abnormal). Six mutations defined three novel genetic loci: ven-1, ven-2, and ven-3. Fifteen mutations proved to be alleles of previously identified muscle attachment/positioning genes, mup-4, mua-1, mua-5, and mua-6. All the mutants also displayed muscle attachment/positioning defects characteristic of mua/mup mutants. The pan-neuronal GFP marker also revealed that mutants of other mua/mup loci, such as mup-1, mup-2, and mua-2, exhibited the Ven defect. The hypodermis, the excretory canal, and the gonad were morphologically abnormal in some of the mutants. The pleiotropic nature of the defects indicates that ven and mua/mup genes are required generally for the maintenance of attachment of tissues to the body wall in C. elegans.


Parasitology ◽  
1965 ◽  
Vol 55 (1) ◽  
pp. 173-181 ◽  
Author(s):  
D. L. Lee

The cuticle of adults ofNippostrongylus brasiliensishas been described using histological, histochemical and ultrastructural techniques.The cuticle has the following layers: an outer triple-layered membrane; a single cortical layer; a fluid-filled layer which is traversed by numerous collagen fibrils; struts which support the fourteen longitudinal ridges of the cuticle and which are suspended by collagen fibrils in the fluid-filled layer; two fibre layers, each layer apparently containing three layers of fibres; and a basement lamella.The fluid-filled layer contains haemoglobin and esterase.The muscles of the body wall are attached to either the basement lamella or to the fibre layers of the cuticle.The mitochondria of the hypodermis are of normal appearance.The longitudinal ridges of the cuticle appear to abrade the microvilli of the intestinal cells of the host.Possible functions of the cuticle are discussed.I wish to thank Dr P. Tate, in whose department this work was done, for helpful suggestions and criticism at all stages of this work, and Mr A. Page for technical assistance. I also wish to thank Professor Boyd for permission to use the electron microscope in the Department of Anatomy.


1964 ◽  
Vol 96 (1-2) ◽  
pp. 98-98 ◽  
Author(s):  
J. W. Arnold

Despite their inert appearance, the wings of insects are living appendages and are supplied with blood. This is true for definitive wings as well as for developing ones, and for modified wings such as tegmina, elytra, hemelytra, and halteres as for those that are specialized for flight. Typically the blood circulates only through the wing veins, but in some insects it escapes into the surrounding membrane in certain areas, and in highly modified forms it may be entirely unconfined. The course of circulation is basically the same in the wings of most insects. It flows outward from the body in the costo-medial veins, moves toward the posterior margins via cross-veins, and returns to the body through the cubito-anal veins and axillary cord. However, rhe precise route followed is highly variable concomitant with distinctive patterns of venation in different taxonomic groups and with wing structure. This is illustrated for a number of orders.


Sign in / Sign up

Export Citation Format

Share Document