scholarly journals The GT factor ZmGT-3b mediates growth–defense tradeoff by regulating photosynthesis and defense response1

2021 ◽  
Author(s):  
Qianqian Zhang ◽  
E Lizhu ◽  
Weixing Dai ◽  
Mingliang Xu ◽  
Jianrong Ye

AbstractPlant growth and development face constant threat from various environmental stresses. Transcription factors (TFs) are crucial for maintaining balance between plant growth and defense. Trihelix TFs display multifaceted functions in plant growth, development, and responses to various biotic and abiotic stresses. Here, we explore the role of a trihelix TF, ZmGT-3b, in regulating the growth–defense tradeoff in maize (Zea mays). ZmGT-3b is primed for instant response to Fusarium graminearum challenge by implementing a rapid and significant reduction of its expression to suppress seedling growth and enhance disease resistance. ZmGT-3b knockdown led to diminished growth, but improved disease resistance and drought tolerance in maize seedlings. In ZmGT-3b knockdown seedlings, the chlorophyll content and net photosynthetic rate were strongly reduced, whereas the contents of major cell wall components, such as lignin, were synchronically increased. Correspondingly, ZmGT-3b knockdown specifically downregulated photosynthesis-related genes, especially ZmHY5 (encoding a conserved central regulator of seedling development and light responses), but synchronically upregulated genes associated with secondary metabolite biosynthesis and defense-related functions. ZmGT-3b knockdown induced defense-related transcriptional reprogramming and increased biosynthesis of lignin without immune activation. These data suggest that ZmGT-3b is a regulator of plant growth–defense tradeoff that coordinates metabolism during growth-to-defense transitions by optimizing the temporal and spatial expression of photosynthesis- and defense-related genes.One-sentence summaryZmGT-3b regulates photosynthesis activity and synchronically suppresses defense response.

2017 ◽  
Vol 30 (4) ◽  
pp. 325-333 ◽  
Author(s):  
Shuai Wang ◽  
Shu Wang ◽  
Qi Sun ◽  
Leiyun Yang ◽  
Ying Zhu ◽  
...  

The phytohormone cytokinin (CK) is not only essential for plant growth and development but also impacts plant immunity. A mutant screen in a constitutively active plant immune receptor mutant snc1 (suppressor of npr1, constitutive1) identified a suppressor mutation of SNC1-induced defense responses in an ABC transporter coding gene ABCG14. ABCG14 transports CK from roots to the shoots, and the suppression of the SNC1-mediated defense response by the loss of ABCG14 is due to a deficiency of trans-zeatin (tZ)-type CK in the shoot. In addition, exogenous application of the tZ-type CK enhances disease resistance associated with increased expression of the plant immune receptor gene SNC1. Taken together, this study further established the role of tZ-type CK in disease resistance and suggests a new intersection of CKs with plant immunity at the expression regulation of a plant immune receptor gene.


2022 ◽  
Vol 12 ◽  
Author(s):  
Akshaya K. Biswal ◽  
Ting-Ying Wu ◽  
Daisuke Urano ◽  
Rémi Pelissier ◽  
Jean-Benoit Morel ◽  
...  

Plant growth and grain filling are the key agronomical traits for grain weight and yield of rice. The continuous improvement in rice yield is required for a future sustainable global economy and food security. The heterotrimeric G protein complex containing a canonical α subunit (RGA1) couples extracellular signals perceived by receptors to modulate cell function including plant development and grain weight. We hypothesized that, besides RGA1, three atypical, extra-large GTP-binding protein (XLG) subunits also regulate panicle architecture, plant growth, development, grain weight, and disease resistance. Here, we identified a role of XLGs in agronomic traits and stress tolerance by genetically ablating all three rice XLGs individually and in combination using the CRISPR/Cas9 genome editing in rice. For this study, eight (three single, two double, and three triple) null mutants were selected. Three XLG proteins combinatorically regulate seed filling, because loss confers a decrease in grain weight from 14% with loss of one XLG and loss of three to 32% decrease in grain weight. Null mutations in XLG2 and XLG4 increase grain size. The mutants showed significantly reduced panicle length and number per plant including lesser number of grains per panicle compared to the controls. Loss-of-function of all individual XLGs contributed to 9% more aerial biomass compared to wild type (WT). The double mutant showed improved salinity tolerance. Moreover, loss of the XLG gene family confers hypersensitivity to pathogens. Our findings suggest that the non-canonical XLGs play important roles in regulating rice plant growth, grain filling, panicle phenotype, stress tolerance, and disease resistance. Genetic manipulation of XLGs has the potential to improve agronomic properties in rice.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1396-1399
Author(s):  
Disha Bhatero ◽  
Punam Sawarkar ◽  
Gaurav Sawarkar

Covid-19 is an infectious disease caused by novel Coronavirus. The overall prevalence rate of Covid-19 in Worldwide ( 9.94M )& it is (529 K) & (153 K) in India and Maharashtra. This situation can be considered under JanapadodhwansaVyadhi in Ayurveda. The primary purpose of Ayurveda  is the prevention of the disease in healthy individuals and eradication of disease, which are curable. Immunity comes under the Vyadhikshamatva. Further, Covid-19 infection is correlated with Vataj-Kaphaj Jwara. In Ayurveda Rasayana therapy to boost up immunity (Bala  & Vyadhikshamatva). The present study aimed to explore the concept of infectious disease and its prevention through different lifestyles described in Ayurveda. The above need-based information is collected from various Ayurvedicliterature (Laghutrayee, Bruhatryayi) along with numerous research articles from databases, such as PubMed, Google Scholar. All collected data were depicted in narrative form and tabular manner under different heads. Considering the above aspect in the prevention of Covid-19, the role of Ayurveda intervention may be proved more beneficial in Covid-19. Further, adoption of code of conduct may efficiently overcome the current pandemic situation by maintaining good immunity & implementation of Ahar, Vihar Vidhis, Dincharya, and Rutucharya& Sadvritta  for improving disease resistance.


2010 ◽  
Vol 27 (1-2) ◽  
pp. 81-90
Author(s):  
Krishna Poudel

Mountains have distinct geography and are dynamic in nature compared to the plains. 'Verticality' and 'variation' are two fundamental specificities of the mountain geography. They possess distinct temporal and spatial characteristics in a unique socio-cultural setting. There is an ever increasing need for spatial and temporal data for planning and management activities; and Geo Information (GI) Science (including Geographic Information and Earth Observation Systems). This is being recognized more and more as a common platform for integrating spatial data with social, economic and environmental data and information from different sources. This paper investigates the applicability and challenges of GISscience in the context of mountain geography with ample evidences and observations from the mountain specific publications, empirical research findings and reports. The contextual explanation of mountain geography, mountain specific problems, scientific concerns about the mountain geography, advances in GIScience, the role of GIScience for sustainable development, challenges on application of GIScience in the contexts of mountains are the points of discussion. Finally, conclusion has been made with some specific action oriented recommendations.


2021 ◽  
Vol 759 (1) ◽  
pp. 012025
Author(s):  
R Simarmata ◽  
Nuriyanah ◽  
L Nurjanah ◽  
J R L Sylvia ◽  
T Widowati

Plant Gene ◽  
2021 ◽  
Vol 26 ◽  
pp. 100283
Author(s):  
M. Iqbal R. Khan ◽  
Syed Uzma Jalil ◽  
Priyanka Chopra ◽  
Himanshu Chhillar ◽  
Antonio Ferrante ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6557
Author(s):  
Li-Ying Ren ◽  
Heng Zhao ◽  
Xiao-Ling Liu ◽  
Tong-Kai Zong ◽  
Min Qiao ◽  
...  

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


Aquaculture ◽  
2021 ◽  
Vol 539 ◽  
pp. 736631
Author(s):  
Yanyan Shi ◽  
Xingyu Cao ◽  
Zhidong Ye ◽  
Yiyuan Xu ◽  
Yiming Wang ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Valliappan Karuppiah ◽  
Lu Zhixiang ◽  
Hongyi Liu ◽  
Murugappan Vallikkannu ◽  
Jie Chen

Abstract Background Retention of agricultural bio-mass residues without proper treatment could affect the subsequent plant growth. In the present investigation, the co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens has been employed for multiple benefits including the enrichment of lignocellulose biodegradation, plant growth, defense potential and disease resistance. Results The Vel1 gene predominantly regulates the secondary metabolites, sexual and asexual development as well as cellulases and polysaccharide hydrolases productions. Overexpression mutant of the Trichoderma asperellum Vel1 locus (TA OE-Vel1) enhanced the activity of FPAase, CMCase, PNPCase, PNPGase, xylanase I, and xylanase II through the regulation of transcription regulating factors and the activation of cellulase and xylanase encoding genes. Further, these genes were induced upon co-cultivation with Bacillus amyloliquefaciens (BA). The co-culture of TA OE-Vel1 + BA produced the best composition of enzymes and the highest biomass hydrolysis yield of 89.56 ± 0.61%. The co-culture of TA OE-Vel1 + BA increased the corn stover degradation by the secretion of cellulolytic enzymes and maintained the C/N ratio of the corn stover amended soil. Moreover, the TA OE-Vel1 + BA increased the maize plant growth, expression of defense gene and disease resistance against Fusarium verticillioides and Cohilohorus herostrophus. Conclusion The co-cultivation of genetically engineered T. asperellum and B. amyloliquefaciens could be utilized as a profound and meaningful technique for the retention of agro residues and subsequent plant growth.


Sign in / Sign up

Export Citation Format

Share Document