scholarly journals Phase separation of RNA-binding protein promotes polymerase engagement and transcription

2021 ◽  
Author(s):  
Wen Shao ◽  
Xianju Bi ◽  
Boyang Gao ◽  
Jun Wu ◽  
Yixuan Pan ◽  
...  

An RNA-involved phase-separation model has been proposed for transcription control. Yet, the molecular links that connect RNA binding to the transcription machinery remain missing. Here we find RNA-binding proteins (RBPs) constitute half of the chromatin proteome in embryonic stem cells (ESCs), and some are colocalized with RNA polymerase (Pol) II at promoters and enhancers. Biochemical analyses of representative RBPs--such as PSPC1 and PTBP1--show that the paraspeckle protein PSPC1 not only prevents the RNA-induced premature release of Pol II, and also makes use of RNA as multivalent molecules to promote Pol II engagement and activity, by enhancing the phase separation and subsequent phosphorylation and release of polymerase condensates. In ESCs, auxin-induced acute degradation of PSPC1 leads to genome-wide defects in Pol II phosphorylation and chromatin-binding and nascent transcription. We propose that the synergistic interplay of RBPs and RNA aids in the rate-limiting step of polymerase condensate formation to promote active transcription.

2019 ◽  
Author(s):  
Ye Fu ◽  
Xiaowei Zhuang

AbstractDiverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of m6A-modified mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are crucial for SG formation. Super-resolution imaging further reveals that YTHDF proteins are in a super-saturated state, forming clusters that reside in the periphery of and at the junctions between SG core clusters, and promote SG phase separation by reducing the activation energy barrier and critical size for condensate formation. Our results reveal a new function and mechanistic insights of the m6A-binding YTHDF proteins in regulating phase separation.


2020 ◽  
Vol 64 (6) ◽  
pp. 907-918
Author(s):  
Xian Du ◽  
Rui Xiao

Abstract Transcription factors (TFs) are well-established key factors orchestrating gene transcription, and RNA-binding proteins (RBPs) are mainly thought to participate in post-transcriptional control of gene. In fact, these two steps are functionally coupled, offering a possibility for reciprocal communications between transcription and regulatory RNAs and RBPs. Recently, a series of exploratory studies, utilizing functional genomic strategies, have revealed that RBPs are prevalently involved in transcription control genome-wide through their interactions with chromatin. Here, we present a refined census of RBPs to grope for such an emerging role and discuss the global view of RBP–chromatin interactions and their functional diversities in transcription regulation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mariana G. Ferrarini ◽  
Avantika Lal ◽  
Rita Rebollo ◽  
Andreas J. Gruber ◽  
Andrea Guarracino ◽  
...  

AbstractThe novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host–pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


Author(s):  
Teresa Chioccarelli ◽  
Geppino Falco ◽  
Donato Cappetta ◽  
Antonella De Angelis ◽  
Luca Roberto ◽  
...  

AbstractCircular RNA (circRNA) biogenesis requires a backsplicing reaction, promoted by inverted repeats in cis-flanking sequences and trans factors, such as RNA-binding proteins (RBPs). Among these, FUS plays a key role. During spermatogenesis and sperm maturation along the epididymis such a molecular mechanism has been poorly explored. With this in mind, we chose circCNOT6L as a study case and wild-type (WT) as well as cannabinoid receptor type-1 knock-out (Cb1−/−) male mice as animal models to analyze backsplicing mechanisms. Our results suggest that spermatozoa (SPZ) have an endogenous skill to circularize mRNAs, choosing FUS as modulator of backsplicing and under CB1 stimulation. A physical interaction between FUS and CNOT6L as well as a cooperation among FUS, RNA Polymerase II (RNApol2) and Quaking (QKI) take place in SPZ. Finally, to gain insight into FUS involvement in circCNOT6L biogenesis, FUS expression was reduced through RNA interference approach. Paternal transmission of FUS and CNOT6L to oocytes during fertilization was then assessed by using murine unfertilized oocytes (NF), one-cell zygotes (F) and murine oocytes undergoing parthenogenetic activation (PA) to exclude a maternal contribution. The role of circCNOT6L as an active regulator of zygote transition toward the 2-cell-like state was suggested using the Embryonic Stem Cell (ESC) system. Intriguingly, human SPZ exactly mirror murine SPZ.


2018 ◽  
Author(s):  
Anna L. Mallam ◽  
Wisath Sae-Lee ◽  
Jeffrey M. Schaub ◽  
Fan Tu ◽  
Anna Battenhouse ◽  
...  

AbstractRNA-binding proteins (RBPs) play essential roles in biology and are frequently associated with human disease. While recent studies have systematically identified individual RBPs, their higher order assembly intoRibonucleoprotein (RNP) complexes has not been systematically investigated. Here, we describe a proteomics method for systematic identification of RNP complexes in human cells. We identify 1,428 protein complexes that associate with RNA, indicating that over 20% of known human protein complexes contain RNA. To explore the role of RNA in the assembly of each complex, we identify complexes that dissociate, change composition, or form stable protein-only complexes in the absence of RNA. Importantly, these data also provide specific novel insights into the function of well-studied protein complexes not previously known to associate with RNA, including replication factor C (RFC) and cytokinetic centralspindlin complex. Finally, we use our method to systematically identify cell-type specific RNA-associated proteins in mouse embryonic stem cells. We distribute these data as a resource, rna.MAP (rna.proteincomplexes.org) which provides a comprehensive dataset for the study of RNA-associated protein complexes. Our system thus provides a novel methodology for further explorations across human tissues and disease states, as well as throughout all domains of life.SummaryAn exploration of human protein complexes in the presence and absence of RNA reveals endogenous ribonucleoprotein complexes


2019 ◽  
Author(s):  
Isabelle Leticia Zaboroski Silva ◽  
Anny Waloski Robert ◽  
Guillermo Cabrera Cabo ◽  
Lucia Spangenberg ◽  
Marco Augusto Stimamiglio ◽  
...  

AbstractPosttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA binding proteins (RBPs) that orchestrate the expression of these molecules. A family of RBPs, known as PUF (Pumilio-FBF), is highly conserved among species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first demonstrated the influence of the silencing of PUM1 and PUM2 on pluripotency genes. OCT4 and NANOG mRNA levels decreased significantly with the knockdown of Pumilio, suggesting that PUMILIO proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that the hESCs silenced for PUM1 and 2 exhibited an improvement in efficiency of in vitro cardiomyogenic differentiation. Using in silico analysis, we identified mRNA targets of PUM1 and PUM2 expressed during cardiomyogenesis. With the reduction of PUM1 and 2, these target mRNAs would be active and could be involved in the progression of cardiomyogenesis.


2004 ◽  
Vol 24 (14) ◽  
pp. 6241-6252 ◽  
Author(s):  
Kristina L. Carroll ◽  
Dennis A. Pradhan ◽  
Josh A. Granek ◽  
Neil D. Clarke ◽  
Jeffry L. Corden

ABSTRACT RNA polymerase II (Pol II) termination is triggered by sequences present in the nascent transcript. Termination of pre-mRNA transcription is coupled to recognition of cis-acting sequences that direct cleavage and polyadenylation of the pre-mRNA. Termination of nonpolyadenylated [non-poly(A)] Pol II transcripts in Saccharomyces cerevisiae requires the RNA-binding proteins Nrd1 and Nab3. We have used a mutational strategy to characterize non-poly(A) termination elements downstream of the SNR13 and SNR47 snoRNA genes. This approach detected two common RNA sequence motifs, GUA[AG] and UCUU. The first motif corresponds to the known Nrd1-binding site, which we have verified here by gel mobility shift assays. We also show that Nab3 protein binds specifically to RNA containing the UCUU motif. Taken together, our data suggest that Nrd1 and Nab3 binding sites play a significant role in defining non-poly(A) terminators. As is the case with poly(A) terminators, there is no strong consensus for non-poly(A) terminators, and the arrangement of Nrd1p and Nab3p binding sites varies considerably. In addition, the organization of these sequences is not strongly conserved among even closely related yeasts. This indicates a large degree of genetic variability. Despite this variability, we were able to use a computational model to show that the binding sites for Nrd1 and Nab3 can identify genes for which transcription termination is mediated by these proteins.


Sign in / Sign up

Export Citation Format

Share Document