scholarly journals Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis

Gut ◽  
2021 ◽  
pp. gutjnl-2020-323951
Author(s):  
Naoki Sugimura ◽  
Qing Li ◽  
Eagle Siu Hong Chu ◽  
Harry Cheuk Hay Lau ◽  
Winnie Fong ◽  
...  

ObjectiveUsing faecal shotgun metagenomic sequencing, we identified the depletion of Lactobacillus gallinarum in patients with colorectal cancer (CRC). We aimed to determine the potential antitumourigenic role of L. gallinarum in colorectal tumourigenesis.DesignThe tumor-suppressive effect of L. gallinarum was assessed in murine models of CRC. CRC cell lines and organoids derived from patients with CRC were cultured with L. gallinarum or Escherichia coli MG1655 culture-supernatant to evaluate cell proliferation, apoptosis and cell cycle distribution. Gut microbiota was assessed by 16S ribosomal DNA sequencing. Antitumour molecule produced from L. gallinarum was identified by liquid chromatography mass spectrometry (LC-MS/MS) and targeted mass spectrometry.ResultsL. gallinarum significantly reduced intestinal tumour number and size compared with E. coli MG1655 and phosphate-buffered saline in both male and female murine intestinal tumourigenesis models. Faecal microbial profiling revealed enrichment of probiotics and depletion of pathogenic bacteria in L. gallinarum-treated mice. Culturing CRC cells with L. gallinarum culture-supernatant (5%, 10% and 20%) concentration-dependently suppressed cell proliferation and colony formation. L. gallinarum culture-supernatant significantly promoted apoptosis in CRC cells and patient-derived CRC organoids, but not in normal colon epithelial cells. Only L. gallinarum culture-supernatant with fraction size <3 kDa suppressed proliferation in CRC cells. Using LC-MS/MS, enrichments of indole-3-lactic acid (ILA) was identified in both L. gallinarum culture-supernatant and the gut of L. gallinarum-treated mice. ILA displayed anti-CRC growth in vitro and inhibited intestinal tumourigenesis in vivo.ConclusionL. gallinarum protects against intestinal tumourigenesis by producing protective metabolites that can promote apoptosis of CRC cells.

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


Author(s):  
Meng Gu ◽  
Chong Liu ◽  
TianYe Yang ◽  
Ming Zhan ◽  
Zhikang Cai ◽  
...  

The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 800-800
Author(s):  
Sonia Cellot ◽  
Jana Krosl ◽  
Keith Humphries ◽  
Guy Sauvageau

Abstract We previously reported the generation of pluripotent and ultracompetitive HSCs through modulation of Hoxb4 and Pbx1 levels. These Hoxb4hiPbx1lo HSCs display a tremendous regenerative potential, yet they are still fully responsive to in vivo regulatory signals that control stem cell pool size (20 000 HSCmouse) and differentiation pathways. Further work in our laboratory attempted to circumvent these physiological constraints by expanding Hoxb4hiPbx1lo transduced HSCs in vitro, and hence revealing their intrinsic expansion potential. Independent experiments were performed where primary mouse BM cells were co-infected with retroviruses encoding antisense Pbx1 cDNA plus YFP, and Hoxb4 plus GFP (double gene transfer ranged between 20–50%). Hoxb4hiPbx1lo HSCs measured using the CRU assay expanded by 105-fold during a 12 day in vitro culture. Following serial transplantations, these cells displayed an additional 4–5 log expansion in vivo. Total stem cell content per animal remained within normal limits. Southern blot analyses of proviral integrations showed that the expansion was polyclonal, and analyses of individually expanded clones provided a molecular proof of in vitro self-renewal (SR). This unprecedented level of HSC expansion in such a short time course (105-fold in 12 days) implies an absolute HSC doubling time of approximately 17 hours in our culture, raising the possibility that virtually all dividing HSCs undergo self-renewal. This analysis prompted us to dissect the impact of Hoxb4 on cell proliferation versus cell fate (SR?). When analyzed during the period of maximal HSC expansion, the cell cycle distribution of Sca+ or Sca+Lin− cells were comparable between the cultures initiated with neo control versus Hoxb4 BM cells (CTL vs Hoxb4: G0/G1: 66% vs 83%; S: 15% vs 9%; G2/M: 18% vs 7%). Correspondingly, CFSE tracking studies confirmed the identical, or even lower, number of cellular divisions in Sca+ cells isolated from cultures initiated with Hoxb4 versus neo transduced cells. Annexin V studies precluded protection from apoptosis as the major mechanism to increase HSC numbers since similar results (3–10% positive cells) were observed in the Hoxb4 versus neo-transduced cells. In summary, our studies support the emerging concept that distinct molecular pathways regulate cell proliferation and self-renewal, suggesting that Hoxb4 + antisense Pbx1 predominantly triggers self-renewal over HSC proliferation.


2021 ◽  
Vol 3 ◽  
Author(s):  
Débora Campos ◽  
Ricardo Goméz-García ◽  
Diana Oliveira ◽  
Ana Raquel Madureira

ABSTRACT The oral delivery of compounds associated with diet or medication have an impact on the gut microbiota balance, which in turn, influences the physiologic process. Several reports have shown significant advances in clarifying the impact, interactions and outcomes of oral intake of nanoparticles and the human gut. These interactions may affect the bioavailability of the delivered compounds. In addition, there is a considerable breakthrough in the development of antimicrobial nanoparticles for intestinal pathogenic bacteria. Several in vitro fermentation and in vivo models have been developed throughout the years and were used to test these systems. The methodologies and studies carried out so far on the modulation of human and animal gut microbiome by oral delivery nanosized materials were reviewed. Overall, the available in vitro studies mimic the real physiological events enabling to select the best production conditions of nanoparticulate systems in a preliminary stage of research. On the other hand, animal studies can be used to access the dosage effect, safety and correlation between haematological, biochemical and symptoms, with gut microbiota groups and metabolites.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 25-26
Author(s):  
Scott D Carter ◽  
Kitty Cardwell ◽  
Andres Espindola Camacho ◽  
Ishtar Silva Lara

Abstract Gut microbiota play an important role in extraction, synthesis and absorption of nutrients. Commensal bacteria prevent pathogenic bacteria colonization and maintain intestinal epithelium integrity. The most common families of commensal bacteria in nursery pigs are Prevotellaceae, Clostridiaceae, Erysipelotrichaceae, Lachnospitaceae, Lactobacillaceae, Ruminicoccaceae and Streptoccocaceae. Understanding the microbial abundance shifts that causes health disruption leading to diarrhea and stunted growth performance can be of great benefit for developing mitigation strategies. Next generation sequencing (NGS) technology facilitates metagenomic approaches, developing sequencing profile representing any and all organisms within a sample. Electronic-probe Diagnostic Nucleic acid Analysis (EDNA) is a bioinformatic tool originally developed to detect species-specific plant pathogen targets in metagenomic databases. EDNA has been shown to reduce time to detect microbial signatures in large metagenomic sequence data. However, it has not previously been used as a metagenomic tool for assessing microbiome composition at the family level. Therefore, a metagenomic sequencing based in silico detection of gut microbiota using E-probes of the seven most common commensal families was developed and further validated in vitro. E-probes were designed from the selected families as follows, Prevotellaceae (89,565), Clostridiaceae (58,554), Erysipelotrichaceae (195), Lachnospitaceae (87), Lactobacillaceae (211,507), Ruminicoccaceae (14,575) and Streptoccocaceae (54,632). Fecal metagenomes of nursery pigs from 0, 7, 14, and 21 d were used to validate the E-probes. The hits were able to detect the relative abundance variations of the 4-time periods. The results between hits and reads were as follows, Prevotellaceae (r2 = 0.98), Clostridiaceae (r2 = 0.99), Erysipelotrichaceae (r2 = 0.99), Lachnospitaceae (r2 = 0.99), Lactobacillaceae (r2 = 0.91), Ruminicoccaceae (r2 = 0.99) and Streptoccocaceae (r2 = 0.98). These results validate in silico usage of E-probes to detect the relative abundance variations in gut microbiota. Further in vitro validation will be performed to assess the microbial changes related to diet in nursery pigs.


Author(s):  
Wanchao Hu ◽  
Liou Huang ◽  
Ziyang Zhou ◽  
Liping Yin ◽  
Jianguo Tang

Diallyl disulfide (DADS), a garlic extract also known as allicin, has been reported to have numerous biological activities, including anticancer, antifungal, and inflammation-inhibiting activities, among others. Although many studies have assessed whether DADS can treat Candida albicans infection in vitro, its in vivo function and the underlying mechanism are still not clear. Accumulated evidence has implicated the gut microbiota as an important factor in the colonization and invasion of C. albicans. Thus, this study aimed to identify the mechanism by which DADS ameliorates dextran sulfate (DSS)-induced intestinal C. albicans infection based on the systematic analysis of the gut microbiota and metabolomics in mice. Here, we determined the body weight, survival, colon length, histological score, and inflammatory cytokine levels in the serum and intestines of experimental mice. Fecal samples were collected for gut microbiota and metabolite analysis by 16S rRNA gene sequencing and LC–MS metabolomics, respectively. DADS significantly alleviated DSS-induced intestinal C. albicans infection and altered the gut microbial community structure and metabolic profile in the mice. The abundances of some pathogenic bacteria, such as Proteobacteria, Escherichia–Shigella, and Streptococcus, were notably decreased after treatment with DADS. In contrast, SCFA-producing bacteria, namely, Ruminiclostridium, Oscillibacter, and Ruminococcaceae_UCG−013, greatly increased in number. The perturbance of metabolites in infectious mice was improved by DADS, with increases in secondary bile acids, arachidonic acid, indoles and their derivatives, which were highly related to the multiple differentially altered metabolic pathways, namely, bile secretion, arachidonic acid metabolism, and tryptophan metabolism. This study indicated that DADS could modulate gut microbiota and metabolites and protect the gut barrier to alleviate DSS-induced intestinal C. albicans infection in mice. Moreover, this work might also provide novel insight into the treatment of C. albicans infection using DADS.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Montserrat Dueñas ◽  
Irene Muñoz-González ◽  
Carolina Cueva ◽  
Ana Jiménez-Girón ◽  
Fernando Sánchez-Patán ◽  
...  

Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria) and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination ofin vitroandin vivomodels could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc.) could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods.


2021 ◽  
Vol 30 ◽  
pp. 096368972098378
Author(s):  
Wei Chen ◽  
Ming Wu ◽  
Si-Tong Cui ◽  
Yue Zheng ◽  
Zhen Liu ◽  
...  

Circ-ITCH, a novel circRNA, was generated from several exons of itchy E3 ubiquitin protein ligase (ITCH). Recently, circ-ITCH has been demonstrated to be involved in cancer development. However, there have been few investigations on the specific role of circ-ITCH in glioma. In this study, we performed quantitative real-time polymerase chain reaction analysis and identified that circ-ITCH was significantly downregulated in glioma tissues and cell lines. The function assays showed that upregulation of circ-ITCH inhibited glioma cell proliferation and invasion in vitro as well as reduced cell growth in vivo. Moreover, miR-106a-5p was found serving as a target of circ-ITCH and miR-106a-5p mimics could reverse the inhibitory effect of circ-ITCH on glioma cell proliferation and invasion. We also revealed that circ-ITCH increased SASH1 expression by sponging miR-106a-5p in glioma cells. In addition, SASH1 downregulation could abrogate the suppressive effect of circ-ITCH on glioma progression. Taken together, our results suggested that circ-ITCH could suppress glioma cell proliferation and invasion via regulating the miR-106a-5p/SASH1 axis, elucidating a novel molecular target for glioma treatment.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shi Huang ◽  
Shuaiming Jiang ◽  
Dongxue Huo ◽  
Celeste Allaband ◽  
Mehrbod Estaki ◽  
...  

Abstract Background Improving probiotic engraftment in the human gut requires a thorough understanding of the in vivo adaptive strategies of probiotics in diverse contexts. However, for most probiotic strains, these in vivo genetic processes are still poorly characterized. Here, we investigated the effects of gut selection pressures from human, mice, and zebrafish on the genetic stability of a candidate probiotic Lactiplantibacillus plantarum HNU082 (Lp082) as well as its ecological and evolutionary impacts on the indigenous gut microbiota using shotgun metagenomic sequencing in combination with isolate resequencing methods. Results We combined both metagenomics and isolate whole genome sequencing approaches to systematically study the gut-adaptive evolution of probiotic L. plantarum and the ecological and evolutionary changes of resident gut microbiomes in response to probiotic ingestion in multiple host species. Independent of host model, Lp082 colonized and adapted to the gut by acquiring highly consistent single-nucleotide mutations, which primarily modulated carbohydrate utilization and acid tolerance. We cultivated the probiotic mutants and validated that these gut-adapted mutations were genetically stable for at least 3 months and improved their fitness in vitro. In turn, resident gut microbial strains, especially competing strains with Lp082 (e.g., Bacteroides spp. and Bifidobacterium spp.), actively responded to Lp082 engraftment by accumulating 10–70 times more evolutionary changes than usual. Human gut microbiota exhibited a higher ecological and genetic stability than that of mice. Conclusions Collectively, our results suggest a highly convergent adaptation strategy of Lp082 across three different host environments. In contrast, the evolutionary changes within the resident gut microbes in response to Lp082 were more divergent and host-specific; however, these changes were not associated with any adverse outcomes. This work lays a theoretical foundation for leveraging animal models for ex vivo engineering of probiotics to improve engraftment outcomes in humans.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Yujiang Peng ◽  
Xijun He ◽  
Huihui Chen ◽  
Hongyu Duan ◽  
Bo Shao ◽  
...  

Glioblastomas (GBMs) are a lethal class of brain cancer, with a median survival <15 months in spite of therapeutic advances. The poor prognosis of GBM is largely attributed to acquired chemotherapy resistance, and new strategies are urgently needed to target resistant glioma cells. Here we report a role for miR-299-5p in GBM. The level of miR-299-5p expression was detected in glioma specimens and cell lines by qRT-PCR. Luciferase reporter assays and Western blots were performed to verify GOLPH3 as a direct target of miR-299-5p. In vitro cell proliferation, invasion, cell cycle distribution, and apoptosis were assessed to determine whether or not miR-299-5p knockdown sensitized GBM cells to temozolomide (TMZ). We demonstrated that miR-299-5p levels were up-regulated in the GBM groups compared with the normal control group. The highest expression of miR-129-5p occurred in the highest GBM stage. miR-299-5p knockdown significantly inhibited the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. We also showed that miR-299-5p knockdown enhanced sensitivity of GBM cells to TMZ both in vitro and in vivo by inhibiting cell proliferation and invasion and promoting apoptosis. In addition, we demonstrated that GOLPH3 is a novel functional target of miR-299-5p. GOLPH3 regulates the MAPK/ERK axis under miR-299-5p regulation. In conclusion, we identified a link between miR-299-5p expression and the GOLPH3/MAPK/ERK axis, thus illustrating a novel role for miR-299-5p in GBM.


Sign in / Sign up

Export Citation Format

Share Document