scholarly journals Septin-microtubule association requires a MAP-like motif unique to Sept9 isoform 1 embedded into septin octamers

2021 ◽  
Author(s):  
Mira Kuzmić ◽  
Gerard Castro Linares ◽  
Jindřiška Leischner Fialová ◽  
François Iv ◽  
Danièle Salaün ◽  
...  

Septins, a family of GTP-binding proteins assembling into higher order structures, interface with the membrane, actin filaments and microtubules, which positions them as important regulators of cytoarchitecture. Septin 9 (Sept9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short MAP-like motif unique to Sept9 isoform 1 (Sept9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring Sept9_i1. Although outside of the MAP-like motif, HNA mutations abrogates this association, identifying a putative regulatory domain. Removal of this domain from Sept9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin associated pathologies.

2021 ◽  
Author(s):  
Mira Kuzmić ◽  
Gerard Castro Linares ◽  
Jindřiška Leischner Fialová ◽  
François Iv ◽  
Danièle Salaün ◽  
...  

Septins, a family of GTP-binding proteins assembling into higher order structures, interface with the membrane, actin filaments and microtubules, which positions them as important regulators of cytoarchitecture. Septin 9 (SEPT9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short MAP-like motif unique to SEPT9 isoform 1 (SEPT9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring SEPT9_i1. Although outside of the MAP-like motif, HNA mutations abrogates this association, identifying a putative regulatory domain. Removal of this domain from SEPT9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin-associated pathologies.


2003 ◽  
Vol 375 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Steven J. WINDER ◽  
Thomas JESS ◽  
Kathryn R. AYSCOUGH

The association of F-actin (filamentous actin) with a large number of binding proteins is essential for cellular function. Actin-binding proteins control the dynamics of actin filaments, nucleate new filaments and facilitate formation of higher-order structures such as actin bundles. The yeast gene SCP1 encodes a small protein with significant homology to mammalian SM22/transgelin. We have investigated the role of Scp1p in budding yeast to probe the fundamental role of this family of proteins. Here, we demonstrate that Scp1p binds to F-actin and induces the formation of tight F-actin bundles in vitro. Deletion of SCP1 in yeast lacking the actin-bundling protein, fimbrin (Sac6p), exacerbates the disrupted actin phenotype and enhances latrunculin-A sensitivity. Furthermore, Scp1p co-localizes with actin in cortical patches and its localization is lost in the presence of latrunculin-A. Our data support a role for Scp1p in bundling actin filaments and, in concert with Sac6p, acting as a second actin-bundling activity crucial to the stability of the yeast actin cytoskeleton.


2021 ◽  
Vol 41 (01) ◽  
pp. 014-021
Author(s):  
Markus Bender ◽  
Raghavendra Palankar

AbstractPlatelet activation and aggregation are essential to limit blood loss at sites of vascular injury but may also lead to occlusion of diseased vessels. The platelet cytoskeleton is a critical component for proper hemostatic function. Platelets change their shape after activation and their contractile machinery mediates thrombus stabilization and clot retraction. In vitro studies have shown that platelets, which come into contact with proteins such as fibrinogen, spread and first form filopodia and then lamellipodia, the latter being plate-like protrusions with branched actin filaments. However, the role of platelet lamellipodia in hemostasis and thrombus formation has been unclear until recently. This short review will briefly summarize the recent findings on the contribution of the actin cytoskeleton and lamellipodial structures to platelet function.


2020 ◽  
Vol 45 (4) ◽  
pp. 351-357
Author(s):  
Bilge Özerman Edis ◽  
Muhammet Bektaş ◽  
Rüstem Nurten

AbstractObjectivesCardiac damage in patient with diphtheritic myocarditis is reported as the leading cause of mortality. Diphtheria toxin (DTx) is a well-known bacterial toxin inducing various cytotoxic effects. Mainly, catalytic fragment inhibits protein synthesis, induces cytotoxicity, and depolymerizes actin filaments. In this study, we aimed to demonstrate the extent of myofibrillar damage under DTx treatment to porcine cardiac tissue samples.MethodsTissue samples were incubated with DTx for 1–3 h in culture conditions. To analyze whole toxin (both fragments) distribution, conjugation of DTx with FITC was performed. Measurements were carried out with fluorescence spectrophotometer before and after dialysis. Immunofluorescence microscopy was used to show localization of DTx-FITC (15 nM) on cardiac tissue incubated for 2 h. Ultrastructural characterization of cardiac tissue samples treated with DTx (15 or 150 nM) was performed with transmission electron microscopy.ResultsDTx exerts myofibrillar disorganization. Myofilament degeneration, mitochondrial damage, vacuolization, and abundant lipid droplets were determined with 150 nM of DTx treatment.ConclusionsThis finding is an addition to depolymerization of actin filaments as a result of the DTx-actin interactions in in vitro conditions, indicating that myofilament damage can occur with DTx directly besides protein synthesis inhibition. Ultrastructural results support the importance of filamentous actin degeneration at diphtheritic myocarditis.


2012 ◽  
Vol 102 (3) ◽  
pp. 186a
Author(s):  
Jinzhou Yuan ◽  
Anand Pillarisetti ◽  
Haim H. Bau ◽  
Yale E. Goldman

2007 ◽  
Vol 330-332 ◽  
pp. 877-880 ◽  
Author(s):  
E.S. Thian ◽  
J. Huang ◽  
Serena Best ◽  
Zoe H. Barber ◽  
William Bonfield

Crystalline hydroxyapatite (HA) and 0.8 wt.% silicon-substituted HA (SiHA) thin films were produced using magnetron co-sputtering. These films were subjected to contact angle measurements and in vitro cell culture study using human osteoblast-like (HOB) cells. A wettability study showed that SiHA has a lower contact angle, and thus is more hydrophilic in nature, as compared to HA. Consequently, enhanced cell growth was observed on SiHA at all time-points. Furthermore, distinct and well-developed actin filaments could be seen within HOB cells on SiHA. Thus, this work demonstrated that the surface properties of the coating may be modified by the substitution of Si into the HA structure.


1993 ◽  
Vol 13 (4) ◽  
pp. 2152-2161 ◽  
Author(s):  
P Belhumeur ◽  
A Lee ◽  
R Tam ◽  
T DiPaolo ◽  
N Fortin ◽  
...  

The temperature-sensitive mutation prp20-1 of Saccharomyces cerevisiae exhibits a pleiotropic phenotype associated with a general failure to maintain a proper organization of the nucleus. Its mammalian homolog, RCC1, is not only reported to be involved in the negative control of chromosome condensation but is also believed to assist in the coupling of DNA replication to the entry into mitosis. Recent studies on Xenopus RCC1 have strongly suggested a further role for this protein in the formation or maintenance of the DNA replication machinery. To elucidate the nature of the various components required for this PRP20 control pathway in S. cerevisiae, we undertook a search for multicopy suppressors of a prp20 thermosensitive mutant. Two genes, GSP1 and GSP2, were identified that encode almost identical polypeptides of 219 and 220 amino acids. Sequence analyses of these proteins show them to contain the ras consensus domains involved in GTP binding and metabolism. The levels of the GSP1 transcript are about 10-fold those of GSP2. As for S. cerevisiae RAS2, GSP2 expression exhibits carbon source dependency, while GSP1 expression does not. GSP1 is an essential gene, and GSP2 is not required for cell viability. We show that GSP1p is nuclear, that it can bind GTP in an in vitro assay, and finally, that a mutation in GSP1p which activates small ras-like proteins by increasing the stability of the GTP-bound form causes a dominant lethal phenotype. We believe that these two gene products may serve in regulating the activities of the multicomponent PRP20 complex.


1994 ◽  
Vol 107 (6) ◽  
pp. 1623-1631 ◽  
Author(s):  
M. Footer ◽  
A. Bretscher

The isolated intestinal microvillus cytoskeleton (core) consists of four major proteins: actin, villin, fimbrin and brush border myosin-I. These proteins can assemble in vitro into structures resembling native microvillus cores. Of these components, villin and brush border myosin-I show tissue-specific expression, so they may be involved in the morphogenesis of intestinal microvilli. When introduced into cultured cells that normally lack the protein, villin induces a reorganization of the actin filaments to generate large surface microvilli. Here we examine the consequences of microinjecting brush border myosin-I either alone or together with villin into cultured fibroblasts. Injection of brush border myosin-I has no discernible effect on the overall morphology of the cells, but does become localized to either normal or villin-induced microvilli and other surface structures containing an actin cytoskeleton. Since some endogenous myosin-Is have been found associated with cytoplasmic vesicles, these results show that brush border myosin-I has a domain that specifically targets it to the plasma membrane in both intestinal and cultured cell systems. Ultrastructural examination of microvilli on control cultured cells revealed that they contain a far more highly ordered bundle of microfilaments than had been previously appreciated. The actin filaments in microvilli of villin-injected cells appeared to be more tightly cross-linked when examined by thin-section electron microscopy. In intestinal microvilli, the core bundle is separated from the plasma membrane by about 30 nm due to the presence of brush border myosin-I.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document