Highly parallel genomic selection response in replicated Drosophila melanogaster populations with reduced genetic variation
Many adaptive traits are polygenic and frequently more loci contributing to the phenotype than needed are segregating in populations to express a phenotypic optimum. Experimental evolution provides a powerful approach to study polygenic adaptation using replicated populations adapting to a new controlled environment. Since genetic redundancy often results in non-parallel selection responses among replicates, we propose a modified Evolve and Resequencing (E&R) design that maximizes the similarity among replicates. Rather than starting from many founders, we only use two inbred Drosophila melanogaster strains and expose them to a very extreme, hot temperature environment (29°C). After 20 generations, we detect many genomic regions with a strong, highly parallel selection response in 10 evolved replicates. The X chromosome has a more pronounced selection response than the autosomes, which may be attributed to dominance effects. Furthermore, we find that the median selection coefficient for all chromosomes is higher in our two-genotype experiment than in classic E&R studies. Since two random genomes harbor sufficient variation for adaptive responses, we propose that this approach is particularly well-suited for the analysis of polygenic adaptation.