scholarly journals Neuromodulation-induced burst firing in parvalbumin interneurons of the basolateral amygdala mediates transition between fear-associated network and behavioral states

2021 ◽  
Author(s):  
Xin Fu ◽  
Eric Teboul ◽  
Jamie Maguire ◽  
Jeffrey G Tasker

Network orchestration of behavioral states involves coordinated oscillations within and between brain regions. The network communication between the basolateral amygdala (BLA) and the medial prefrontal cortex (PFC) plays a critical role in fear expression. Neuromodulatory systems play an essential role in regulating changes between behavioral states, however, a mechanistic understanding of how amygdalar circuits mediate transitions between brain and behavioral states remains largely unknown. Here, we examine the role of Gq-mediated neuromodulation of parvalbumin (PV)-expressing interneurons in the BLA in coordinating network and behavioral states using combined chemogenetics, patch clamp and field potential recordings. We demonstrate that Gq-signaling via hM3D designer receptor and α1 adrenoreceptor activation shifts the pattern of activity of the PV interneurons from tonic to phasic by stimulating a previously unknown, highly stereotyped bursting pattern of activity. This, in turn, generates bursts of inhibitory postsynaptic currents (IPSCs) and phasic firing in BLA principal neurons. The Gq-induced transition from tonic to phasic firing in BLA PV interneurons suppressed amygdalo-frontal gamma oscillations in vivo, consistent with the critical role of tonic PV neuron activity in gamma generation. The suppression of gamma oscillations by hM3D and α1 receptor activation in BLA PV interneurons also facilitated fear memory recall, in line with the inhibitory effect of gamma on fear expression. Thus, our data reveal a BLA parvalbumin neuron-specific neuromodulatory mechanism that mediates the transition to a fear-associated brain network state via regulation of amygdalo-frontal gamma oscillations.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
John P. Crow ◽  
John C. Marecki ◽  
Misty Thompson

In mammalian systems, D-serine is perhaps the most biologically active D-amino acid described to date. D-serine is a coagonist at the NMDA-receptor, and receptor activation is dependent on D-serine binding. Because D-serine binding dramatically increases receptor affinity for glutamate, it can produce excitotoxicity without any change in glutamateper se. D-serine is twofold higher in the spinal cords of mSOD1 (G93A) ALS mice, and the deletion of serine racemase (SR), the enzyme that produces D-serine, results in an earlier onset of symptoms, but with a much slower rate of disease progression. Localization studies within the brain suggest that mSOD1 and subsequent glial activation could contribute to the alterations in SR and D-serine seen in ALS. By also degrading both D-serine and L-serine, SR appears to be a prime bidirectional regulator of free serine levelsin vivo. Therefore, accurate and reproducible measurements of D-serine are critical to understanding its regulation by SR. Several methods for measuring D-serine have been employed, and significant issues related to validation and standardization remain unresolved. Further insights into the intracellular transport and tissue-specific compartmentalization of D-serine within the CNS will aid in the understanding of the role of D-serine in the pathogenesis of ALS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hua Yang ◽  
Mengjie Zhang ◽  
Jiahao Shi ◽  
Yunhe Zhou ◽  
Zhipeng Wan ◽  
...  

Several studies have associated reduced expression of synaptosomal-associated protein of 25 kDa (SNAP-25) with schizophrenia, yet little is known about its role in the illness. In this paper, a forebrain glutamatergic neuron-specific SNAP-25 knockout mouse model was constructed and studied to explore the possible pathogenetic role of SNAP-25 in schizophrenia. We showed that SNAP-25 conditional knockout (cKO) mice exhibited typical schizophrenia-like phenotype. A significantly elevated extracellular glutamate level was detected in the cerebral cortex of the mouse model. Compared with Ctrls, SNAP-25 was dramatically reduced by about 60% both in cytoplasm and in membrane fractions of cerebral cortex of cKOs, while the other two core members of SNARE complex: Syntaxin-1 (increased ~80%) and Vamp2 (increased ~96%) were significantly increased in cell membrane part. Riluzole, a glutamate release inhibitor, significantly attenuated the locomotor hyperactivity deficits in cKO mice. Our findings provide in vivo functional evidence showing a critical role of SNAP-25 dysfunction on synaptic transmission, which contributes to the developmental of schizophrenia. It is suggested that a SNAP-25 cKO mouse, a valuable model for schizophrenia, could address questions regarding presynaptic alterations that contribute to the etiopathophysiology of SZ and help to consummate the pre- and postsynaptic glutamatergic pathogenesis of the illness.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. Memmert ◽  
A. Damanaki ◽  
A. V. B. Nogueira ◽  
S. Eick ◽  
M. Nokhbehsaim ◽  
...  

Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.


2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


2014 ◽  
Vol 34 (10) ◽  
pp. 1706-1714 ◽  
Author(s):  
Yao Li ◽  
Rachael L Baylie ◽  
Matthew J Tavares ◽  
Joseph E Brayden

Cerebral parenchymal arterioles (PAs) have a critical role in assuring appropriate blood flow and perfusion pressure within the brain. They are unique in contrast to upstream pial arteries, as defined by their critical roles in neurovascular coupling, distinct sensitivities to chemical stimulants, and enhanced myogenic tone development. The objective of the present study was to reveal some of the unique mechanisms of myogenic tone regulation in the cerebral microcirculation. Here, we report that in vivo suppression of TRPM4 (transient receptor potential) channel expression, or inhibition of TRPM4 channels with 9-phenanthrol substantially reduced myogenic tone of isolated PAs, supporting a key role of TRPM4 channels in PA myogenic tone development. Further, downregulation of TRPM4 channels inhibited vasoconstriction induced by the specific P2Y4 and P2Y6 receptor ligands (UTP γS and UDP) by 37% and 42%, respectively. In addition, 9-phenanthrol substantially attenuated purinergic ligand-induced membrane depolarization and constriction of PAs, and inhibited ligand-evoked TRPM4 channel activation in isolated PA myocytes. In concert with our previous work showing the essential contributions of P2Y4 and P2Y6 receptors to myogenic regulation of PAs, the current results point to TRPM4 channels as an important link between mechanosensitive P2Y receptor activation and myogenic constriction of cerebral PAs.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


Sign in / Sign up

Export Citation Format

Share Document