scholarly journals Life-history predicts global population responses to the weather in the terrestrial mammals

2021 ◽  
Author(s):  
John Jackson ◽  
Christie Le Coeur ◽  
Owen R Jones

AbstractWith the looming threat of abrupt ecological disruption due to a changing climate, predicting which species are most vulnerable to environmental change is critical. The life-history of a species is a promising candidate for explaining differences in climate-change responses, but we now need data linking population change, weather and life-history to explore these predictions. Here, we use long-term abundance records from 157 species of terrestrial mammals to investigate the link between weather and annual population growth rates. Overall, we found no consistent effect of temperature or precipitation anomalies on annual population growth rates, but there was variability in weather responses for populations within a species. Crucially, however, long-lived mammals with smaller litter sizes had responses with a reduced absolute magnitude compared to their shorter-living counterparts with larger litters. These results highlight the role of species-level life-history in driving responses to the environment.

2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


2008 ◽  
Vol 73 (1) ◽  
pp. 136-165 ◽  
Author(s):  
Scott E. Ingram

Floods and droughts and their effects on Hohokam canal systems and irrigation agriculture play a prominent role in many cultural-historical interpretations of the Hohokam trajectory in the lower Salt River valley (modern-day Phoenix, Arizona metropolitan area). Catastrophic floods and associated geomorphic stream channel changes may have contributed to settlement and population changes and the substantial depopulation of the lower Salt River valley ca. A.D. 1450 or later. In this study, archaeological data on Hohokam domestic architecture is used to infer changes in prehistoric population growth rates from ca. A.D. 775 through 1450 in the most thoroughly documented canal system in the Salt River valley. Changes in growth rates are compared to the retrodictions of annual streamflow discharge volumes derived from tree-ring records. Contrary to expectations, population growth rates increased as the frequency, magnitude, and duration of inferred flooding, drought, and variability increased. These results challenge existing assumptions regarding the relationship among floods and droughts, conditions for irrigation agriculture, and population change in the lower Salt River valley.


2002 ◽  
Vol 357 (1425) ◽  
pp. 1307-1319 ◽  
Author(s):  
H. Charles J. Godfray ◽  
Mark Rees

Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering.


2014 ◽  
Vol 10 (3) ◽  
pp. 20130782 ◽  
Author(s):  
Abigail M. Jergenson ◽  
David A. W. Miller ◽  
Lorin A. Neuman-Lee ◽  
Daniel A. Warner ◽  
Fredric J. Janzen

Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles ( Chrysemys picta ) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change.


2016 ◽  
Author(s):  
X. Guan ◽  
J. Huang ◽  
Y. Zhang ◽  
Y. Xie ◽  
J. Liu

Abstract. Anthropogenic dust is acknowledged as a product of human activities on disturbed soil, and is generated mainly from sensitive and fragile regions including croplands, pastures, and urbanized regions. In this study, we analyzed the behaviour of anthropogenic dust in semi-arid region of globe, and its relationship to human activities. An obvious peak in the total anthropogenic dust column, much higher magnitude than those of wet regions, was observed in semi-arid regions with population growth rates of more than 11.46 %. Four typical semi-arid regions, East China, India, North America and North Africa were selected to explore the local difference in anthropogenic dust production. The population growth rates in these areas were approximately 6.16 %, 17.71 %, 11.21 %, and 29.26 %, and the anthropogenic dust levels were 0.17 g m−2, 0.38 g m−2, 0.10 g m−2 and 0.21 g m−2, which are higher than the natural dust column burden. The anthropogenic dust column burden is positively correlated with the population and population change, indicating a contribution from human activities to the anthropogenic dust production. Based on the fact that anthropogenic dust can act as warming aerosol, the radiative effect of anthropogenic dust in semi-arid regions can not be ignored and requires further investigation.


<em>Abstract.</em> —Seabirds become mature at a late age, experience low annual fecundity, often refrain from breeding, and enjoy annual adult survival rates as high as 98%. This suite of life history characteristics limits the capacity for seabird populations to recover quickly from major perturbations, and presents important conservation challenges. Concern over anthropogenic impacts on seabird populations has led to the initiation of long-term field programs to monitor seabird reproductive performance and population dynamics. In addition, seabirds have been recognized as potentially useful and economical indicators of the state of the marine environment and, in particular, the status of commercially important prey stocks. This paper reviews demographic and life history attributes of seabird populations and uses this information to explore the consequences of longevity from the respective standpoints of conservation and monitoring goals. Analysis of a simplified life cycle model reveals that maximum potential population growth rates (λ) under ideal circumstances fall within the range of 1.03–1.12 for most species, though growth rates realized in nature will always be lower. Elasticity analysis confirms that seabird population growth rates are extremely sensitive to small variations in adult survival rates, and dictates that survival monitoring should be considered an essential component of conservation strategies. As in other organisms with long life spans, ecological and physiological costs of reproduction are expected to figure prominently in seabird reproductive decisions. Consequently, understanding how seabirds allocate reproductive effort in response to varying environmental conditions is an important prerequisite for correctly interpreting field data from monitoring studies.


Sign in / Sign up

Export Citation Format

Share Document