scholarly journals Measuring the tolerance of the genetic code to altered codon size

2021 ◽  
Author(s):  
E. DeBenedictis ◽  
D. Söll ◽  
K. Esvelt

SummaryProtein translation using four-base codons occurs in both natural and synthetic systems. What constraints contributed to the universal adoption of a triplet-codon, rather than quadruplet-codon, genetic code? Here, we investigate the tolerance of the E. coli genetic code to tRNA mutations that increase codon size. We found that tRNAs from all twenty canonical isoacceptor classes can be converted to functional quadruplet tRNAs (qtRNAs), many of which selectively incorporate a single amino acid in response to a specified four-base codon. However, efficient quadruplet codon translation often requires multiple tRNA mutations, potentially constraining evolution. Moreover, while tRNAs were largely amenable to quadruplet conversion, only nine of the twenty aminoacyl tRNA synthetases tolerate quadruplet anticodons. These constitute a functional and mutually orthogonal set, but one that sharply limits the chemical alphabet available to a nascent all-quadruplet code. Our results illuminate factors that led to selection and maintenance of triplet codons in primordial Earth and provide a blueprint for synthetic biologists to deliberately engineer an all-quadruplet expanded genetic code.

2019 ◽  
Vol 20 (8) ◽  
pp. 1929 ◽  
Author(s):  
Sergey V. Melnikov ◽  
Dieter Söll

In the past two decades, tRNA molecules and their corresponding aminoacyl-tRNA synthetases (aaRS) have been extensively used in synthetic biology to genetically encode post-translationally modified and unnatural amino acids. In this review, we briefly examine one fundamental requirement for the successful application of tRNA/aaRS pairs for expanding the genetic code. This requirement is known as “orthogonality”—the ability of a tRNA and its corresponding aaRS to interact exclusively with each other and avoid cross-reactions with additional types of tRNAs and aaRSs in a given organism.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


2000 ◽  
Vol 64 (1) ◽  
pp. 202-236 ◽  
Author(s):  
Carl R. Woese ◽  
Gary J. Olsen ◽  
Michael Ibba ◽  
Dieter Söll

SUMMARY The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the “gemini group.” (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Sanya Chadha ◽  
N. Arjunreddy Mallampudi ◽  
Debendra K. Mohapatra ◽  
Rentala Madhubala

ABSTRACT Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis. Increasing resistance and severe side effects of existing drugs have led to the need to identify new chemotherapeutic targets. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and are required for protein synthesis. aaRSs are known drug targets for bacterial and fungal pathogens. Here, we have characterized and evaluated the essentiality of L. donovani lysyl-tRNA synthetase (LdLysRS). Two different coding sequences for lysyl-tRNA synthetases are annotated in the Leishmania genome database. LdLysRS-1 (LdBPK_150270.1), located on chromosome 15, is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 (LdBPK_300130.1), present on chromosome 30, is closer to bacteria. In the present study, we have characterized LdLysRS-1. Recombinant LdLysRS-1 displayed aminoacylation activity, and the protein localized to the cytosol. The LdLysRS-1 heterozygous mutants had a restrictive growth phenotype and attenuated infectivity. LdLysRS-1 appears to be an essential gene, as a chromosomal knockout of LdLysRS-1 could be generated when the gene was provided on a rescuing plasmid. Cladosporin, a fungal secondary metabolite and a known inhibitor of LysRS, was more potent against promastigotes (50% inhibitory concentration [IC50], 4.19 µM) and intracellular amastigotes (IC50, 1.09 µM) than were isomers of cladosporin (3-epi-isocladosporin and isocladosporin). These compounds exhibited low toxicity to mammalian cells. The specificity of inhibition of parasite growth caused by these inhibitors was further assessed using LdLysRS-1 heterozygous mutant strains and rescue mutant promastigotes. These inhibitors inhibited the aminoacylation activity of recombinant LdLysRS. Our data provide a framework for the development of a new class of drugs against this parasite. IMPORTANCE Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein translation, providing charged tRNAs for the proper construction of peptide chains. These enzymes provide raw materials for protein translation and also ensure fidelity of translation. L. donovani is a protozoan parasite that causes visceral leishmaniasis. It is a continuously proliferating parasite that depends heavily on efficient protein translation. Lysyl-tRNA synthetase is one of the aaRSs which charges lysine to its cognate tRNA. Two different coding sequences for lysyl-tRNA synthetases (LdLysRS) are present in this parasite. LdLysRS-1 is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 is closer to bacteria. Here, we have characterized LdLysRS-1 of L. donovani. LdLysRS-1 appears to be an essential gene, as the chromosomal null mutants did not survive. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. This study also provides a platform to explore LdLysRS-1 as a potential drug target.


Author(s):  
Lei Lei ◽  
Zachary F. Burton

The genetic code evolved by parallel tracks of chaotic and ordered processes. Liquid-liquid phase separation (hydrogels), a chaotic process, constructs diverse membraneless compartments within cells, resulting in regulated hydration and sequestration and concentration of reaction components. Hydrogels relate to chaotic amyloid fiber production. We propose that polyglycine and related hydrogels (i.e. GADV; G is glycine), phase separations, membraneless droplets and amyloid accretions organized protocell domains to drive the earliest evolution of the genetic code and the pre-life to cellular life transition. By contrast, evolution of tRNA, tRNAomes, aminoacyl-tRNA synthetases and translation systems followed highly ordered and systematic pathways, described by well-defined mechanisms and rules. The pathway of evolution of aminoacyl-tRNA synthetases, which tracked evolution of the genetic code, is clarified. Hydrogels and amyloids form a chaotic component, therefore, that complemented otherwise systematic processes. We describe with detail a pre-life world in which hydrogels and amyloids provided the selections of the first life.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Florian Kaiser ◽  
Sarah Krautwurst ◽  
Sebastian Salentin ◽  
V. Joachim Haupt ◽  
Christoph Leberecht ◽  
...  

Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 58 ◽  
Author(s):  
Pol Arranz-Gibert ◽  
Jaymin R. Patel ◽  
Farren J. Isaacs

The genetic code defines how information in the genome is translated into protein. Aside from a handful of isolated exceptions, this code is universal. Researchers have developed techniques to artificially expand the genetic code, repurposing codons and translational machinery to incorporate nonstandard amino acids (nsAAs) into proteins. A key challenge for robust genetic code expansion is orthogonality; the engineered machinery used to introduce nsAAs into proteins must co-exist with native translation and gene expression without cross-reactivity or pleiotropy. The issue of orthogonality manifests at several levels, including those of codons, ribosomes, aminoacyl-tRNA synthetases, tRNAs, and elongation factors. In this concept paper, we describe advances in genome recoding, translational engineering and associated challenges rooted in establishing orthogonality needed to expand the genetic code.


Sign in / Sign up

Export Citation Format

Share Document