scholarly journals Generation of specialized blood vessels through transdifferentiation of lymphatic endothelial cells

2021 ◽  
Author(s):  
Rudra N. Das ◽  
Ivan Bassi ◽  
Yanchao Han ◽  
Giuseppina Lambiase ◽  
Yaara Tevet ◽  
...  

AbstractThe lineage and developmental trajectory of a cell are key determinants of cellular identity. Yet, the functional relevance of deriving a specific cell type from ontologically distinct progenitors, remains an open question. In the case of the vascular system, blood and lymphatic vessels are composed of endothelial cells (ECs) that differentiate and diversify to cater the different physiological demands of each organ. While lymphatic vessels have been shown to originate from multiple cell sources, lymphatic ECs (LECs) themselves seem to have a unipotent cell fate. In this work we uncover a novel mechanism of blood vessel formation through transdifferentiation of LECs. Using advanced long-term reiterative imaging and lineage-tracing of ECs in zebrafish, from embryonic development through adulthood, we reveal a hitherto unknown process of LEC-to-BEC transdifferentiation, underlying vascularization of the anal fin (AF). Moreover, we demonstrate distinct functional implications for deriving AF vessels from either LECs or BECs, uncovering for the first time a clear link between cell ontogeny and functionality. Molecularly, we identify Sox17 as a negative regulator of lymphatic fate specification, whose specific expression in AF LECs suppresses its lymphatic cell fate. Finally, we show that akin to the developmental process, during adult AF regeneration the vasculature is re-derived from lymphatics, demonstrating that LECs in the mature fish retain both potency and plasticity for generating specialized blood vessels. Overall, our work highlights a novel mechanism of blood vessel formation through LEC trans-differentiation, and provides the first in vivo evidence for a link between cell ontogeny and functionality in ECs.

2021 ◽  
Vol 118 (31) ◽  
pp. e2101931118
Author(s):  
Shira Landau ◽  
Abigail Newman ◽  
Shlomit Edri ◽  
Inbal Michael ◽  
Shahar Ben-Shaul ◽  
...  

The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct's potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.


2021 ◽  
Vol 22 (6) ◽  
pp. 2804
Author(s):  
Yasuo Yoshitomi ◽  
Takayuki Ikeda ◽  
Hidehito Saito-Takatsuji ◽  
Hideto Yonekura

Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.


2001 ◽  
Vol 88 (1) ◽  
Author(s):  
Eberhard Gunsilius ◽  
Hans-Christoph Duba ◽  
Andreas L. Petzer ◽  
Christian M. Kähler ◽  
Günther A. Gastl

Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2300-2311 ◽  
Author(s):  
Heather B. Wood ◽  
Gillian May ◽  
Lyn Healy ◽  
Tariq Enver ◽  
Gillian M. Morriss-Kay

Abstract CD34 is a cell surface glycoprotein that is selectively expressed within the human hematopoietic system on stem and progenitor cells, and in early blood vessels. To elucidate its functions during early blood vessel formation and hematopoiesis, we analyzed the expression patterns, in day 8 to day 10 mouse embryos, of CD34 RNA by in situ hybridization and protein by immunohistochemistry using the monclonal antibody RAM 34. Levels of expression in embryonic blood vessels were correlated with the mode of vessel formation, being high in pre-endothelial cells and in vessels forming by vasculogenesis (particularly the dorsal aortae) or angiogenesis, but low in vessels forming by coalescence (the cardinal veins). CD34+ erythroid cells, presumably of yolk sac origin, were present in the liver of day 10 embryos; at the same stage, putative definitive hematopoietic cells, strongly CD34+, were present in the para-aortic mesenchyme. Possible sites of hemangioblastic differentiation were detected in the form of CD34+ endothelium-attached hematopoietic cells in the dorsal aorta and in two previously unreported locations, the proximal umbilical and vitelline arteries. These observations suggest functions for CD34 in relation to specific modes of blood vessel formation, and a hemangioblastic role in both embryonic and extraembryonic sites.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3595-3595
Author(s):  
Masataka Kuwana ◽  
Hiroaki Kodama ◽  
Yuka Okazaki ◽  
Takashi Satoh ◽  
Takafumi Inoue ◽  
...  

Abstract Circulating CD14+ monocytes are known to be precursors of phagocytes, such as macrophages and dendritic cells. We have recently identified a novel CD14+CD45+CD34+type I collagen+ cell fraction derived from human circulating CD14+ monocytes, monocyte-derived mesenchymal progenitor (MOMP), which contains progenitors capable of differentiating into a variety of mesenchymal cells, including bone, cartilage, fat and skeletal muscle (J Leukoc Biol2003;74:833). Here, we investigated a differentiation potential of human MOMPs along endothelial, cardiomyocytic, and neuronal lineages. MOMPs treated with angiogenic factors for 7 days underwent a change in their morphology from spindle-shaped to caudated. Transmission electron microscopic analysis revealed that these cells displayed rod-shaped microtubulated structures corresponding to Weibel-Palade bodies. Almost every cell expressed CD31, VE-vadherin, VEGFR2, Tie-2, von Willeband factor (vWF), eNOS and CD146, but CD14/CD45 expression was markedly down-regulated. Functional characteristics, including vWF release upon histamine stimulation, acetylated LDL uptake, and up-regulated expression of VEGFR1 in response to hypoxia, were indistinguishable between MOMP-derived endothelial-like cells and human umbilical vein endothelial cells. We further performed xenogenic transplantation studies using a SCID mouse model, in which syngeneic colon carcinoma cells were injected subcutaneously with or without human MOMPs. Tumors generated from carcinoma cells alone showed central necrosis and less blood vessel formation, but co-transplantation with MOMPs resulted in promotion of blood vessel formation and no areas of necrosis. Immunohistochemical analysis using human specific antibodies to CD31 and vWF demonstrated that >50% of blood vessels incorporated MOMP-derived endothelial cells. To investigate whether MOMPs were able to differentiate along cardiomyocytic and neuronal lineages, pre-labeled human MOMPs were co-cultivated with primary cultures of rat cardiomyocytes or neurons. Shortly after co-cultivation with rat cardiomyocytes, the majority of MOMPs expressed cardiomyocyte-specific transcription factors, Nkx2.5, GATA-4, eHAND and MEF2, together with CD14/CD45. Subsequently, a subpopulation of MOMPs expressed troponin I and atrial natriuretic peptide and lost CD14/CD45 expression. Spontaneously beating cells formed gap junctions with adjacent rat cardiomyocytes and exhibited electrophysiological properties of ventricular myocytes. MOMPs co-cultured with rat neurons for 3 days expressed neuron-specific transcription factors, Ngn-2, NeuroD, Mash1 and nestin. At day 7, these cells expressed neuron-specific markers, NeuN and Hu. At day 18, a subpopulation of the cells exhibited a neuron-like morphology, including characteristic axons and a refractile round cell body, and expressed MAP2 and β3-tubulin. Co-cultivation of MOMPs with rat cells induced to express GFP by adenoviral gene transfer resulted in appearance of human cardiomyoocytes and neurons without GFP staining, suggesting that our observations are not solely explained by cell fusion. In summary, human MOMPs are capable of differentiating along endothelial and cardiomyocytic lineages as well as a neuronal lineage of an ectoderm-origin. Circulating CD14+ monocytes can be an abundant and easily accessible source for autologous cell transplantation for tissue regeneration.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Victoria Osinski ◽  
Jennifer Kirby ◽  
Swapnil Sonkusare ◽  
Mete Civelek ◽  
Coleen McNamara

Rationale: Over half of the U.S. is overweight or obese and excessive weight gain greatly increases one’s risk of cardiovascular disease. Adipose tissue requires new blood vessel formation to support transport of nutrients during expansion. Our lab has previously published that global loss of the helix-loop-helix transcription factor Inhibitor of differentiation 3 (Id3) results in attenuated increases in adipose depot size and microvascular blood volume in mice fed a high fat diet (HFD). Id3 has also been implicated in regulating tumor angiogenesis. Together, our results suggest that Id3 is regulating HFD-induced angiogenesis in adipose tissue. Methods and Results: To determine if Id3 is regulating angiogenesis, we performed genetic, cellular, and arterial experiments and analyses. Using bromodeoxyuridine (BrdU) treatments and flow cytometry, we found that endothelial cells within adipose tissue of mice with a global genetic knockout of Id3 (Id3 KO) had fewer proliferating (BrdU-positive) endothelial cells (0.0679% BrdU+CD31+ cells) than wild type (WT) mice (0.754% BrdU+CD31+). Using mouse adipose tissue gene expression data from the Gene Ontology Consortium database, we found that genes correlating most significantly with Id3 were functionally classified under categories of vascular development (p = 4.45E-8, correlation significance) and angiogenesis (p = 1.66E-6). Sox18, a known transcriptional regulator of blood vessel formation, shows higher relative gene expression in Id3 WT (1.42 ± 0.417) than Id3 KO (0.332 ± 0.126) adipose tissue. Finally, preliminary findings using pressure myography demonstrate that Id3 KO mice have a higher baseline arterial diameter than Id3 WT. Conclusion: Dysregulation of vascular development during adipose tissue expansion is altering arterial function in an Id3-dependent manner.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3229-3229
Author(s):  
Bin Li ◽  
Amylynn A. Teleron ◽  
Charles Lin ◽  
Pampee P. Young

Abstract There is a growing body of data demonstrating that vasculogenesis, whereby bone marrow -derived circulating progenitor cells (EPCs) home to sites of neovascularization, results in significant contribution to blood vessel formation during tumor growth, ischemic injury and wound healing. Vascular Endothelial Growth Factor (VEGF) has recently been shown to augment vasculogenesis. In the current study, we examined if VEGF/VEGF Receptor (VEGFR) interactions are important for EPC recruitment. Both VEGFR1 (flt-1) and VEGFR2 (flk-1) are strongly expressed, as detected by immunofluorescent and FACS analysis, on EPCs obtained by ex vivo expansion of human peripheral blood. In a modified Boyden chamber migration assay, EPCs showed dose dependent migration to VEGF. To examine receptor specificity, EPCs were preincubated with receptor blocking anti-VEGFR1 or -VEGFR2 prior to the migration assay. Level of inhibition by VEGFR1 blocking antibody was commensurate with blocking VEGFR2. Furthermore, migration in response to a VEGFR1-specific agonist, PlGF, was comparable to that induced by VEGF and was completely ablated by preincubation with VEGFR1 blocking antibody. By contrast, differentiated endothelial cells had diminished migration in response to PlGF as compared to VEGF. Furthermore, blocking VEGFR1 only mildly disrupted VEGF-induced migration of differentiated endothelial cells in vitro. Hence, unlike differentiated endothelial cells, EPC migration in vitro was mediated by both VEGF receptors. By quantitative RT-PCR, we examined the level of VEGFR1 and VEGFR2 mRNA transcripts in EPCs versus differentiated endothelial cells. VEGFR1 transcripts in EPCs were expressed 3-fold higher than in differentiated endothelial cells. VEGFR2 and neuropilin transcript levels in EPCs, however, were lower than in differentiated endothelial cells. These results suggest that VEGF/VEGFR1 interactions are important in EPC migration in vitro. We have subcloned VEGFR1 cDNA into a retrovirus vector and have shown by western blot that we can direct increased cellular expression of VEGFR1. In further experiments, we will examine the role of VEGFR1 in human EPC recruitment using murine xenotransplant models of hindlimb ischemia and wound healing. These studies will provide valuable insight towards developing EPCs as cellular therapy to augment blood vessel formation.


2015 ◽  
Vol 36 (6) ◽  
pp. 848-854 ◽  
Author(s):  
Kanaga Sabapathy

The role of p73, the homologue of the tumor suppressor p53, in regulating angiogenesis has recently been extensively investigated, resulting in the publication of five articles. Of these, two studies suggested a suppressive role, while the others implied a stimulatory role for the p73 isoforms in regulating angiogenesis. A negative role for TAp73, the full-length form that is often associated with tumor suppression, in blood vessel formation, is consistent with its general attributes and was proposed to be effected indirectly through the degradation of hypoxia-inducible factor 1α (HIF1-α), the master angiogenic regulator. In contrast, a positive role for TAp73 coincides with its recently understood role in supporting cellular survival and thus tumorigenesis, consistent with TAp73 being not-mutated but rather often overexpressed in clinical contexts. In the latter case, TAp73 expression was induced by hypoxia via HIF1-α, and it appears to directly promote angiogenic target gene activation and blood vessel formation independent of HIF1-α. This mini review will provide an overview of these seemingly opposite recent findings as well as earlier data, which collectively establish the definite possibility that TAp73 is indeed capable of both promoting and inhibiting angiogenesis, depending on the cellular context.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Petra E Burgisser ◽  
Dennie Tempel ◽  
Dorien Hermkens ◽  
Stefan Schulte-Merker ◽  
Caroline Cheng ◽  
...  

Vascular development is crucial in normal physiology and pathophysiology, and is in part orchestrated by a dynamic balance between extracellular matrix (ECM) and endothelial cells. The molecular mechanisms that govern this balance and as such play a role in the formation of new blood vessels remain largely unknown. In order to identify new genes involved in blood vessel formation, we performed a genome-wide gene expression array analysis in Flk1+ angioblasts during mouse development using a commercial platform (Affymetrix). Multimerin2 (Mmrn2) expression was found to be upregulated in angioblasts and in the developing vasculature of zebrafish and mice. In vitro , using immunofluorescence, Mmrn2 was detected outside of human aortic endothelial cells (HAECs), were it co-localized with the extracellular matrix components perlecan, laminin and fibronectin. Direct interaction with these proteins was confirmed using a combination of co-immunoprecipitation followed by proteomics (LC-MS), and western blot to identify possible binding partners. Mmrn2 gain-of-function and loss-of-function in vitro studies, using Mmrn2 siRNA and adenoviral constructs likewise decreased and increased the expression of its binding partner perlecan. Perlecan is a well known modulator of the pro-angiogenic factor, FGF2, and is required for further signaling through the FGF receptor. Therefore, Mmrn2 may influence FGF2 signaling through perlecan expression and complex formation. Subsequent in vitro studies using an adenoviral construct to induce Mmrn2 overexpression resulted in a G1-arrest in HAECs (P<0.001, N=8). In FGF2 depleted medium a G1 arrest was also observed (P<0.05, N=3), Mmrn2 overexpression combined with FGF2 depleted medium did not enhance the G1 arrest, suggesting a role of Mmrn2 in FGF2 signaling. In addition, Mmrn2 silencing or overexpression in HAECs led to a loss of ECM organization or improved organization, respectively. In line, the binding partner of Mmrn2, perlecan, has been shown to be involved in stabilization of the ECM. These findings suggest that Mmrn2 plays a role during blood vessel formation by binding to perlecan and the ECM, thereby modulating FGF2 signaling and ECM organization and subsequently, regulating endothelial cell proliferation.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Zhong Liu ◽  
Ujala Rana ◽  
Baofeng Zhao ◽  
Qing R Miao

Nogo-B was previously identified as a protein that is expressed in endothelial cells and vascular smooth muscle cells. Nogo-A/B deficient mice show exaggerated neointimal proliferation and abnormal remodeling. Nogo-B receptor (NgBR) is a type I receptor, which was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Our recent work reveals that NgBR is a critic membrane scaffold protein required for Ras translocation and activation, which is essential for VEGF-stimulated Ras-PI3K-Akt signaling pathway. Here, we further demonstrate the roles of NgBR in regulating primitive blood vessel formation in embryoid body culture systems and vasculature development in mouse embryo. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. In addition, our preliminary results show that NgBR homozygous knockout mice are embryonic lethal happened at E6.5 or earlier, and endothelial cell specific NgBR knockout mice are embryonic lethal happened at E11.5 and have severe blood vessel formation defects in embryo. Mechanistically, NgBR has two potential regulatory roles during embryonic vasculature development. NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also impairs endothelial cell lineage commitment by delaying BMP4 production during the period of mesoderm formation. These results suggest that NgBR may be one of important genes coordinating the vasculature development.


Sign in / Sign up

Export Citation Format

Share Document