scholarly journals Modeling SARS-CoV-2 and Influenza Infections and Antiviral Treatments in Human Lung Epithelial Tissue Equivalents

2021 ◽  
Author(s):  
Hoda Zarkoob ◽  
Anna Allue-Guardia ◽  
Yu-Chi Chen ◽  
Olive Jung ◽  
Andreu G. Vilanova ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.

2004 ◽  
Vol 11 (1) ◽  
pp. 21-28 ◽  
Author(s):  
James J. McSharry ◽  
Ann C. McDonough ◽  
Betty A. Olson ◽  
George L. Drusano

ABSTRACT A flow cytometric (fluorescence-activated cell sorter [FACS]) assay was developed for analysis of the drug susceptibilities of wild-type and drug-resistant influenza A and B virus laboratory strains and clinical isolates for the neuraminidase (NA) inhibitors oseltamivir carboxylate, zanamivir, and peramivir. The drug susceptibilities of wild-type influenza viruses and those with mutations in the hemagglutinin (HA) and/or NA genes rendering them resistant to one or more of the NA inhibitors were easily determined with the FACS assay. The drug concentrations that reduced the number of virus-infected cells or the number of PFU by 50% as determined by the FACS assay were similar to those obtained with the more time-consuming and labor-intensive virus yield reduction assay. The NA inhibition (NAI) assay confirmed the resistance patterns demonstrated by the FACS and virus yield assays for drug-resistant influenza viruses with mutations in the NA gene. However, only the FACS and virus yield assays detected NA inhibitor-resistant influenza viruses with mutations in the HA gene but not in the NA gene. The FACS assay is more rapid and less labor-intensive than the virus yield assay and just as quantitative. The FACS assay determines the drug susceptibilities of influenza viruses with mutations in either the HA or NA genes, making the assay more broadly useful than the NAI assay for measuring the in vitro susceptibilities of influenza viruses for NA inhibitors. However, since only viruses with mutations in the NA gene that lead to resistance to the NA inhibitors correlate with clinical resistance, this in vitro assay should not be used in the clinical setting to determine resistance to NA inhibitors. The assay may be useful for determining the in vivo susceptibilities of other compounds effective against influenza A and B viruses.


2020 ◽  
Vol 92 (11) ◽  
pp. 45-50
Author(s):  
V. V. Zarubaev ◽  
A. V. Slita ◽  
E. O. Sinegubova ◽  
A. A. Muryleva ◽  
I. N. Lavrentieva

Influenza and ARVI represent the most numerous and dangerous group of causative agents of respiratory infections human. Aim. Characterization of the antiviral properties of enisamium iodide against human respiratory viruses in in vitro experiments. Materials and methods. In the course of experiments, the cytotoxic properties of enisamium iodide were studied against the cell lines Vero, MA-104, A549, L-41 and HEp-2. The antiviral activity of enisamium iodide was studied using virus yield reduction assay against influenza viruses, parainfluenza virus, respiratory syncytial virus, Coxsackie B3 and Coxsackie B4 viruses, as well as adenoviruses types 5 and 6. Results. The most sensitive to the action of enisamium iodide was the human parainfluenza virus, whose activity decreased by 2.3 orders of magnitude under the action of the drug in A549 cells. Of the cell cultures used, enisamium iodide exhibited the maximum antiviral effect in human lung carcinoma cells A549, where, in its presence, the level of reproduction of adenoviruses of types 5 and 6, Coxsackie viruses B3 and B4, and human parainfluenza virus decreased by an order of magnitude or more. The antiviral activity of enisamium iodide was least manifested in Vero cells. Conclusion. According to the results of in vitro experiments, enisamium iodide can be considered as an antiviral drug with a wide spectrum of activity against human respiratory viruses.


2018 ◽  
Vol 399 (9) ◽  
pp. 1053-1064 ◽  
Author(s):  
Mélia Magnen ◽  
Brigitta Margit Elsässer ◽  
Olga Zbodakova ◽  
Petr Kasparek ◽  
Fabien Gueugnon ◽  
...  

Abstract Every year, influenza A virus (IAV) affects and kills many people worldwide. The viral hemagglutinin (HA) is a critical actor in influenza virus infectivity which needs to be cleaved by host serine proteases to exert its activity. KLK5 has been identified as an activating protease in humans with a preference for the H3N2 IAV subtype. We investigated the origin of this preference using influenza A/Puerto Rico/8/34 (PR8, H1N1) and A/Scotland/20/74 (Scotland, H3N2) viruses. Pretreatment of noninfectious virions with human KLK5 increased infectivity of Scotland IAV in MDCK cells and triggered influenza pneumonia in mice. These effects were not observed with the PR8 IAV. Molecular modeling and in vitro enzymatic studies of peptide substrates and recombinant HAs revealed that the sequences around the cleavage site do not represent the sole determinant of the KLK5 preference for the H3N2 subtype. Using mouse Klk5 and Klk5-deficient mice, we demonstrated in vitro and in vivo that the mouse ortholog protease is not an IAV activating enzyme. This may be explained by unfavorable interactions between H3 HA and mKlk5. Our data highlight the limitations of some approaches used to identify IAV-activating proteases.


2018 ◽  
Author(s):  
Andres J. Gonzalez ◽  
Emmanuel C. Ijezie ◽  
Onesmo B. Balemba ◽  
Tanya A. Miura

AbstractInfluenza viruses and rhinoviruses are responsible for a large number of acute respiratory viral infections in human populations and are detected as co-pathogens within hosts. Clinical and epidemiological studies suggest that co-infection by rhinovirus and influenza virus may reduce disease severity and that they may also interfere with each other’s spread within a host population. To determine how co-infection by these two unrelated respiratory viruses affects pathogenesis, we established a mouse model using a minor serogroup rhinovirus (RV1B) and mouse-adapted influenza A virus (PR8). Infection of mice with RV1B two days before PR8 reduced pathogenesis of mild to moderate, but not severe PR8 infections. Disease attenuation was associated with an early inflammatory response in the lungs and enhanced clearance of PR8. However, co-infection by RV1B did not reduce PR8 viral loads early in infection or inhibit replication of PR8 within respiratory epithelia orin vitro. Inflammation in co-infected mice remained focal, in comparison to diffuse inflammation and damage in the lungs of mice infected by PR8. These findings suggest that RV1B stimulates an early immune response that clears PR8 while limiting excessive pulmonary inflammation. The timing of RV1B co-infection was a critical determinant of protection, suggesting that sufficient time is needed to induce this response. Finally, disease attenuation was not unique to RV1B: co-infection by a murine coronavirus two days before PR8 also reduced disease severity. This model will be critical for understanding the mechanisms responsible for attenuation of influenza disease during co-infection by unrelated respiratory viruses.


2020 ◽  
Vol 78 (4) ◽  
Author(s):  
Sai Disha K. ◽  
Rashmi Puranik ◽  
Sudheesh N. ◽  
Kavitha K. ◽  
Fajeelath Fathima ◽  
...  

ABSTRACT Influenza viruses are known to cause acute respiratory illness, sometimes leading to high mortality rates. Though there are approved influenza antivirals available, their efficacy has reduced over time, due to the drug resistance crisis. There is a perpetual need for newer and better drugs. Drug screening based on the interaction dynamics with different viral target proteins has been a preferred approach in the antiviral drug discovery process. In this study, the FDA approved drug database was virtually screened with the help of Schrödinger software, to select small molecules exhibiting best interactions with the influenza A virus endonuclease protein. A detailed cytotoxicity profiling was carried out for the two selected compounds, cefepime and dolutegravir, followed by in vitro anti-influenza screening using plaque reduction assay. Cefepime showed no cytotoxicity up to 200 μM, while dolutegravir was non-toxic up to 100 μM in Madin–Darby canine kidney cells. The compounds did not show any reduction in viral plaque numbers indicating no anti-influenza activity. An inefficiency in the translation of the molecular interactions into antiviral activity does not necessarily mean that the molecules were inactive. Nevertheless, testing the molecules for endonuclease inhibition per se can be considered a worthwhile approach.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 539
Author(s):  
Klaus Fink ◽  
Andreas Nitsche ◽  
Markus Neumann ◽  
Marica Grossegesse ◽  
Karl-Heinz Eisele ◽  
...  

Since the SARS-CoV-2 pandemic started in late 2019, the search for protective vaccines and for drug treatments has become mandatory to fight the global health emergency. Travel restrictions, social distancing, and face masks are suitable counter measures, but may not bring the pandemic under control because people will inadvertently or at a certain degree of restriction severity or duration become incompliant with the regulations. Even if vaccines are approved, the need for antiviral agents against SARS-CoV-2 will persist. However, unequivocal evidence for efficacy against SARS-CoV-2 has not been demonstrated for any of the repurposed antiviral drugs so far. Amantadine was approved as an antiviral drug against influenza A, and antiviral activity against SARS-CoV-2 has been reasoned by analogy but without data. We tested the efficacy of amantadine in vitro in Vero E6 cells infected with SARS-CoV-2. Indeed, amantadine inhibited SARS-CoV-2 replication in two separate experiments with IC50 concentrations between 83 and 119 µM. Although these IC50 concentrations are above therapeutic amantadine levels after systemic administration, topical administration by inhalation or intranasal instillation may result in sufficient amantadine concentration in the airway epithelium without high systemic exposure. However, further studies in other models are needed to prove this hypothesis.


2014 ◽  
Vol 56 (3) ◽  
pp. 191-195
Author(s):  
Dalva Assunção Portari Mancini ◽  
Aparecida Santo Pietro Pereira ◽  
Rita Maria Zucatelli Mendonça ◽  
Adelia Hiroko Nagamori Kawamoto ◽  
Rosely Cabette Barbosa Alves ◽  
...  

Equines are susceptible to respiratory viruses such as influenza and parainfluenza. Respiratory diseases have adversely impacted economies all over the world. This study was intended to determine the presence of influenza and parainfluenza viruses in unvaccinated horses from some regions of the state of São Paulo, Brazil. Blood serum collected from 72 equines of different towns in this state was tested by hemagglutination inhibition test to detect antibodies for both viruses using the corresponding antigens. About 98.6% (71) and 97.2% (70) of the equines responded with antibody protective titers (≥ 80 HIU/25µL) H7N7 and H3N8 subtypes of influenza A viruses, respectively. All horses (72) also responded with protective titers (≥ 80) HIU/25µL against the parainfluenza virus. The difference between mean antibody titers to H7N7 and H3N8 subtypes of influenza A viruses was not statistically significant (p > 0.05). The mean titers for influenza and parainfluenza viruses, on the other hand, showed a statistically significant difference (p < 0.001). These results indicate a better antibody response from equines to parainfluenza 3 virus than to the equine influenza viruses. No statistically significant differences in the responses against H7N7 and H3N8 subtypes of influenza A and parainfluenza 3 viruses were observed according to the gender (female, male) or the age (≤ 2 to 20 years-old) groups. This study provides evidence of the concomitant presence of two subtypes of the equine influenza A (H7N7 and H3N8) viruses and the parainfluenza 3 virus in equines in Brazil. Thus, it is advisable to vaccinate equines against these respiratory viruses.


Author(s):  
Maria Antonia De Francesco ◽  
Caterina Pollara ◽  
Franco Gargiulo ◽  
Mauro Giacomelli ◽  
Arnaldo Caruso

Different preventive public health measures were adopted globally to limit the spread of SARS-CoV-2, such as hand hygiene and the use of masks, travel restrictions, social distance actions such as the closure of schools and workplaces, case and contact tracing, quarantine and lockdown. These measures, in particular physical distancing and the use of masks, might have contributed to containing the spread of other respiratory viruses that occurs principally by contact and droplet routes. The aim of this study was to evaluate the prevalence of different respiratory viruses (influenza viruses A and B, respiratory syncytial virus, parainfluenza viruses 1, 2, 3 and 4, rhinovirus, adenovirus, metapneumovirus and human coronaviruses) after one year of the pandemic. Furthermore, another aim was to evaluate the possible impact of these non-pharmaceutical measures on the circulation of seasonal respiratory viruses. This single center study was conducted between January 2017–February 2020 (pre-pandemic period) and March 2020–May 2021 (pandemic period). All adults >18 years with respiratory symptoms and tested for respiratory pathogens were included in the study. Nucleic acid detection of all respiratory viruses was performed by multiplex real time PCR. Our results show that the test positivity for influenza A and B, metapneumovirus, parainfluenza virus, respiratory syncytial virus and human coronaviruses decreased with statistical significance during the pandemic. Contrary to this, for adenovirus the decrease was not statistically significant. Conversely, a statistically significant increase was detected for rhinovirus. Coinfections between different respiratory viruses were observed during the pre-pandemic period, while the only coinfection detected during pandemic was between SARS-CoV-2 and rhinovirus. To understand how the preventive strategies against SARS-CoV-2 might alter the transmission dynamics and epidemic patterns of respiratory viruses is fundamental to guide future preventive recommendations.


Sign in / Sign up

Export Citation Format

Share Document