scholarly journals Source range phylogenetic community structure can predict the outcome of avian introductions

2021 ◽  
Author(s):  
Brian S. Maitner ◽  
Daniel S Park ◽  
Brian J Enquist ◽  
Katrina M Dlugosch

Competing phylogenetic models have been proposed to explain the success of species introduced to other communities. Here, we present a study predicting the establishment success of birds introduced to Florida, Hawaii, and New Zealand using several alternative models, considering species' phylogenetic relatedness to source and recipient range taxa, propagule pressure, and traits. We find consistent support for the predictive ability of source region phylogenetic structure. However, we find that the effects of recipient region phylogenetic structure vary in sign and magnitude depending on inclusion of source region phylogenetic structure, delineation of the recipient species pool, and the use of phylogenetic correction in the models. We argue that tests of alternative phylogenetic hypotheses including the both source and recipient community phylogenetic structure, as well as important covariates such as propagule pressure, are likely to be critical for identifying general phylogenetic patterns in introduction success, predicting future invasions, and for stimulating further exploration of the underlying mechanisms of invasibility.

2018 ◽  
Vol 48 (3) ◽  
pp. 248-256 ◽  
Author(s):  
Pedro Manuel VILLA ◽  
Markus GASTAUER ◽  
Sebastião Venâncio MARTINS ◽  
Juan Fernando CARRIÓN ◽  
Prímula Viana CAMPOS ◽  
...  

ABSTRACT Although inselbergs from around the world are iconic ecosystems, little is known on the underlying mechanisms of community assembly, especially in their characteristic patchy outcrop vegetation. Environmental constraints are expected to cause phylogenetic clustering when ecological niches are conserved within evolutionary lineages. We tested whether vegetation patches from rock outcrops of the Piedra La Tortuga Natural Monument, in the northern Amazon region, are phylogenetically clustered, indicating that environmental filtering is the dominant driver of community assemblage therein. We classified all patches according to their size as very small (< 1 m2), small (1-4 m2), medium-sized (4-8 m2), and large patches (8-15 m2). From each class, we randomly selected 10 patches, totalizing 40 patches covering 226 m2. All individuals found in the 40 isolated patches were identified to the species level. We also correlated measurements of phylogenetic community structure with patch size. We found that species from patches are restricted to the clades monocots, fabids, malvids, and lamiids. We conclude that vegetation in this rock outcrop is phylogenetically clustered. Furthermore, we found that phylogenetic turnover between pairs of patches increases with patch size, which is consistent with a scenario of higher environmental stress in smaller patches. Further research is necessary to identify nurse species in inselberg vegetation, which is pivotal for conservation and restoration of this particular ecosystem.


2015 ◽  
Author(s):  
Carlo Ricotta ◽  
Eszter EA Ari ◽  
Giuliano Bonanomi ◽  
Francesco Giannino ◽  
Duncan Heathfield ◽  
...  

The increasing availability of phylogenetic information facilitates the use of evolutionary methods in community ecology to reveal the importance of evolution in the species assembly process. However, while several methods have been applied to a wide range of communities across different spatial scales with the purpose of detecting non-random phylogenetic patterns, the spatial aspects of phylogenetic community structure have received far less attention. Accordingly, the question for this study is: can point pattern analysis be used for revealing the phylogenetic structure of multi-species assemblages? We introduce a new individual-centered procedure for analyzing the scale-dependent phylogenetic structure of multi-species point patterns based on digitized field data. The method uses nested circular plots with increasing radii drawn around each individual plant and calculates the mean phylogenetic distance between the focal individual and all individuals located in the circular ring delimited by two successive radii. This scale-dependent value is then averaged over all individuals of the same species and the observed mean is compared to a null expectation with permutation procedures. The method detects particular radius values at which the point pattern of a single species exhibits maximum deviation from the expectation towards either phylogenetic aggregation or segregation. Its performance is illustrated using data from a grassland community in Hungary and simulated point patterns. The proposed method can be extended to virtually any distance function for species pairs, such as functional distances.


2020 ◽  
Vol 13 (5) ◽  
pp. 601-610
Author(s):  
Chris M McGrannachan ◽  
Gillis J Horner ◽  
Melodie A McGeoch

Abstract Aims Darwin’s naturalization hypothesis proposes that successfully established alien species are less closely related to native species due to differences in their ecological niches. Studies have provided support both for and against this hypothesis. One reason for this is the tendency for phylogenetic clustering between aliens and natives at broad spatial scales with overdispersion at fine scales. However, little is known about how the phylogenetic relatedness of alien species alters the phylogenetic structure of the communities they invade, and at which spatial scales effects may manifest. Here, we examine if invaded understorey plant communities, i.e. containing both native and alien taxa, are phylogenetically clustered or overdispersed, how relatedness changes with spatial scale and how aliens affect phylogenetic patterns in understorey communities. Methods Field surveys were conducted in dry forest understorey communities in south-east Australia at five spatial scales (1, 20, 500, 1500 and 4500 m2). Standardized effect sizes of two metrics were used to quantify phylogenetic relatedness between communities and their alien and native subcommunities, and to examine how phylogenetic patterns change with spatial scale: (i) mean pairwise distance and (ii) mean nearest taxon distance (MNTD). Important Findings Aliens were closely related to each other, and this relatedness tended to increase with scale. Native species and the full community exhibited either no clear pattern of relatedness with increasing spatial scale or were no different from random. At intermediate spatial scales (20–500 m2), the whole community tended towards random whereas the natives were strongly overdispersed and the alien subcommunity strongly clustered. This suggests that invasion by closely related aliens shifts community phylogenetic structure from overdispersed towards random. Aliens and natives were distantly related across spatial scales, supporting Darwin’s naturalization hypothesis, but only when phylogenetic distance was quantified as MNTD. Phylogenetic dissimilarity between aliens and natives increased with spatial scale, counter to expected patterns. Our findings suggest that the strong phylogenetic clustering of aliens is driven by human-mediated introductions involving closely related taxa that can establish and spread successfully. Unexpected scale-dependent patterns of phylogenetic relatedness may result from stochastic processes such as fire and dispersal events and suggest that competition and habitat filtering do not exclusively dominate phylogenetic relationships at fine and coarse spatial scales, respectively. Distinguishing between metrics that focus on different evolutionary depths is important, as different metrics can exhibit different scale-dependent patterns.


2019 ◽  
Vol 190 (4) ◽  
pp. 333-344 ◽  
Author(s):  
Hong Qian ◽  
Brody Sandel ◽  
Tao Deng ◽  
Ole R Vetaas

AbstractEcologists have embraced phylogenetic measures of assemblage structure, in large part for the promise of better mechanistic inferences. However, phylogenetic structure is driven by a wide array of factors from local biotic interactions to biogeographical history, complicating the mechanistic interpretation of a pattern. This may be particularly problematic along elevational gradients, where rapidly changing physical and biological conditions overlap with geological and biogeographical history, potentially producing complex patterns of phylogenetic dispersion (relatedness). We focus on the longest elevational gradient of vegetation in the world (i.e. c. 6000 m in Nepal) to explore patterns of phylogenetic dispersion for angiosperms (flowering plants) along this elevational gradient. We used the net relatedness index to quantify phylogenetic dispersion for each elevational band of 100 m. We found a zig-zag pattern of phylogenetic dispersion along this elevational gradient. With increasing elevation, the phylogenetic relatedness of species decreased for the elevational segment between 0 and c. 2100 m, increased for the elevational segment between 2100 and c. 4200 m, and decreased for the elevational segment above c. 4200 m. We consider this pattern to be a result of the interaction of geophysical (e.g. plate tectonics) and eco-evolutionary processes (e.g. niche conservatism and trait convergence). We speculate on the mechanisms that might have generated this zig-zag pattern of phylogenetic dispersion.


2015 ◽  
Vol 370 (1662) ◽  
pp. 20140008 ◽  
Author(s):  
Hironori Toyama ◽  
Tsuyoshi Kajisa ◽  
Shuichiro Tagane ◽  
Keiko Mase ◽  
Phourin Chhang ◽  
...  

Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.


Author(s):  
Mark van Kleunen ◽  
Oliver Bossdorf ◽  
Wayne Dawson

We review the state of the art of alien plant research with emphasis on conceptual advances and knowledge gains on general patterns and drivers, biotic interactions, and evolution. Major advances include the identification of different invasion stages and invasiveness dimensions (geographic range, habitat specificity, local abundance) and the identification of appropriate comparators while accounting for propagule pressure and year of introduction. Developments in phylogenetic and functional trait research bear great promise for better understanding of the underlying mechanisms. Global patterns are emerging with propagule pressure, disturbance, increased resource availability, and climate matching as major invasion drivers, but species characteristics also play a role. Biotic interactions with resident communities shape invasion outcomes, with major roles for species diversity, enemies, novel weapons, and mutualists. Mounting evidence has been found for rapid evolution of invasive aliens and evolutionary responses of natives, but a mechanistic understanding requires tighter integration of molecular and phenotypic approaches. We hope the open questions identified in this review will stimulate further research on the ecology and evolution of alien plants.


2015 ◽  
Author(s):  
Carlo Ricotta ◽  
Eszter EA Ari ◽  
Giuliano Bonanomi ◽  
Francesco Giannino ◽  
Duncan Heathfield ◽  
...  

The increasing availability of phylogenetic information facilitates the use of evolutionary methods in community ecology to reveal the importance of evolution in the species assembly process. However, while several methods have been applied to a wide range of communities across different spatial scales with the purpose of detecting non-random phylogenetic patterns, the spatial aspects of phylogenetic community structure have received far less attention. Accordingly, the question for this study is: can point pattern analysis be used for revealing the phylogenetic structure of multi-species assemblages? We introduce a new individual-centered procedure for analyzing the scale-dependent phylogenetic structure of multi-species point patterns based on digitized field data. The method uses nested circular plots with increasing radii drawn around each individual plant and calculates the mean phylogenetic distance between the focal individual and all individuals located in the circular ring delimited by two successive radii. This scale-dependent value is then averaged over all individuals of the same species and the observed mean is compared to a null expectation with permutation procedures. The method detects particular radius values at which the point pattern of a single species exhibits maximum deviation from the expectation towards either phylogenetic aggregation or segregation. Its performance is illustrated using data from a grassland community in Hungary and simulated point patterns. The proposed method can be extended to virtually any distance function for species pairs, such as functional distances.


2017 ◽  
Vol 25 (01) ◽  
pp. 71-81
Author(s):  
YOUHUA CHEN

In theoretical ecology and community ecology, it is still unclear how phylogenetic community structure and species distributions are linked together. In this paper, a neutral model for evaluating phylogenetic constraints on species diversity and distribution patterns is developed to address these issues. To accomplish this, temporal species distribution and diversity patterns are evaluated and simulated by considering the impact of phylogenetic relatedness of species in a lattice landscape with square grids. A continuous patch for the resultant distributional range map of a species is defined as a group of grids in which the interior grids are adjacent to each other while the edge grids of the patch are isolated from other remaining grids in the range map. The adjacency or isolation of a grid with respect to another grid follows the von Neumann neighborhood criterion. The hypothesis tested is: phylogenetically closely related species tend to avoid each other (phylogenetic dilution), which produces a phylogenetic overdispersion pattern. In this case, all species have similar species abundances and distribution-patch size patterns. In contrast, if closely related species tend to associate together (phylogenetic concentration), a phylogenetic clustering pattern emerges: phylogenetically distinct species tend to have higher abundances and more large distribution patches. Using simulations, this paper presents results which demonstrate the reverse phenomenon: if it is assumed that phylogenetic relatedness of species is modeled as a dilution effect, the resultant distributional maps for evolutionarily distinct species present significantly increased numbers of continuous large patches. An evolutionarily distinct clade tends to have significantly higher relative abundance than other clades in all simulations. It was also found that if phylogenetic relatedness of species is modeled as a concentration effect, the simulated distributional map of each species would present a similar percentage of large patches for both evolutionarily unique and common clades for many cases when the community size is large enough. However, being similar to dilution effect, the resultant species relative abundance for evolutionarily unique clade is significantly higher than that for evolutionarily common clade. In conclusion, evolutionary distinct species will have more chances to survive with high populations and less fragmented distributional range in environments where the phylogenetic dilution effect is functioning. It is hoped that these results contributed to clarifying the complex associations generated by phylogenetic community structure in future ecological and evolutionary studies.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Justin D Silverman ◽  
Alex D Washburne ◽  
Sayan Mukherjee ◽  
Lawrence A David

Surveys of microbial communities (microbiota), typically measured as relative abundance of species, have illustrated the importance of these communities in human health and disease. Yet, statistical artifacts commonly plague the analysis of relative abundance data. Here, we introduce the PhILR transform, which incorporates microbial evolutionary models with the isometric log-ratio transform to allow off-the-shelf statistical tools to be safely applied to microbiota surveys. We demonstrate that analyses of community-level structure can be applied to PhILR transformed data with performance on benchmarks rivaling or surpassing standard tools. Additionally, by decomposing distance in the PhILR transformed space, we identified neighboring clades that may have adapted to distinct human body sites. Decomposing variance revealed that covariation of bacterial clades within human body sites increases with phylogenetic relatedness. Together, these findings illustrate how the PhILR transform combines statistical and phylogenetic models to overcome compositional data challenges and enable evolutionary insights relevant to microbial communities.


Author(s):  
Jérôme Blondé ◽  
Vincenzo Iacoviello ◽  
Dimitrios Lampropoulos ◽  
Matthieu Vétois ◽  
Juan Manuel Falomir Pichastor

AbstractA wealth of evidence has demonstrated that individuals’ participation in collective actions largely derives from perceived group disadvantages. In the present research, we hypothesized that engagement in protest activities can be attenuated if the disadvantages originate from legitimate figures of authority. Across three experiments based on vignettes describing a hypothetical work setting (total N = 670), we found consistent support for this prediction. In Study 1, we showed that intention to participate in a protest movement in reaction to an unfavourable distribution of outcomes was lower when legitimacy of the group’s authority was high (vs. low). In addition, a reduction in anger was found to play a mediating role. Studies 2 and 3 further demonstrated that these effects only occurred when participants were confronted with a relatively low disadvantage (as opposed to a high disadvantage). In an attempt to identify underlying mechanisms, Study 3 emphasized the moral implications that lie behind responses to high (vs. low) disadvantageous decisions and that shape resistance processes. Taken together, these findings call for more consideration for the role of group authorities in the comprehension of collective action tendencies and give insights to better understand how and when authority legitimacy can serve to perpetuate social disparities and hinders the fight against injustices.


Sign in / Sign up

Export Citation Format

Share Document