scholarly journals The role of AUX1 during lateral root development in the domestication of the model C4 grass Setaria italica

2021 ◽  
Author(s):  
Sha Tang ◽  
Mojgan Shahriari ◽  
Jishan Xiang ◽  
Taras Pasternak ◽  
Anna A Igolkina ◽  
...  

C4 photosynthesis increases the efficiency of carbon fixation by spatially separating high concentrations of molecular oxygen from rubisco. The specialized leaf anatomy required for this separation evolved independently many times. C4 root systems are highly branched, an adaptation thought to support high rates of photosynthesis; however, little is known about the molecular mechanisms that have driven the evolution of C4 root system architecture (RSA). Using a mutant screen in the C4 model plant Setaria italica, we identify siaux1-1 and siaux1-2 as RSA mutants, and use CRISPR/cas9-mediated genome editing and overexpression to confirm the importance of the locus. As AUX1 is not necessary for lateral root emergence in S. viridis, the species from which S. italica was domesticated, we conducted an analysis of auxin responsive elements in the promoters of auxin-responsive gene families in S. italica, and explore the molecular basis of SiAUX1 function in seedling development using an RNAseq analysis of wild type and siaux1-1 plants. Finally, we use a root coordinate system to compare cell-by-cell meristem structures in siaux1-1 and wild type Setaria plants, observing changes in the distribution of cell volumes in all cell layers and a dependence in the frequency of protophloem and protoxylem strands on siAUX1.

Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 103 ◽  
Author(s):  
Wei Dong ◽  
Yinghua Wang ◽  
Hideki Takahashi

Plant root system architecture changes drastically in response to availability of macronutrients in the soil environment. Despite the importance of root sulfur (S) uptake in plant growth and reproduction, molecular mechanisms underlying root development in response to S availability have not been fully characterized. We report here on the signaling module composed of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (CLE) peptide and CLAVATA1 (CLV1) leucine-rich repeat receptor kinase, which regulate lateral root (LR) development in Arabidopsis thaliana upon changes in S availability. The wild-type seedlings exposed to prolonged S deficiency showed a phenotype with low LR density, which was restored upon sulfate supply. In contrast, the clv1 mutant showed a higher daily increase rate of LR density relative to the wild-type under prolonged S deficiency, which was diminished to the wild-type level upon sulfate supply, suggesting that CLV1 directs a signal to inhibit LR development under S-deficient conditions. CLE2 and CLE3 transcript levels decreased under S deficiency and through CLV1-mediated feedback regulations, suggesting the levels of CLE peptide signals are adjusted during the course of LR development. This study demonstrates a fine-tuned mechanism for LR development coordinately regulated by CLE-CLV1 signaling and in response to changes in S availability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 612 ◽  
Author(s):  
Veronica Santoro ◽  
Michela Schiavon ◽  
Francesco Gresta ◽  
Andrea Ertani ◽  
Francesca Cardinale ◽  
...  

The hormones strigolactones accumulate in plant roots under phosphorus (P) shortage, inducing variations in plant phenotype. In this study, we aimed at understanding whether strigolactones control morphological and anatomical changes in tomato (Solanum lycopersicum L.) roots under varying P supply. Root traits were evaluated in wild-type seedlings grown in high vs. low P, with or without exogenous strigolactones, and in wild-type and strigolactone-depleted plants grown first under high vs. no P, and then under high vs. no P after acclimation on low P. Exogenous strigolactones stimulated primary root and lateral root number under low P. Root growth was reduced in strigolactone-depleted plants maintained under continuous P deprivation. Total root and root hair length, lateral root number and root tip anatomy were impaired by low strigolactone biosynthesis in plants grown under low P or transferred from low to no P. Under adequate P conditions, root traits of strigolactone-depleted and wild-type plants were similar. Concluding, our results indicate that strigolactones (i) control macro- and microscopic changes of root in tomato depending on P supply; and (ii) do not affect root traits significantly when plants are supplemented with adequate P, but are needed for acclimation to no P and typical responses to low P.


2006 ◽  
Vol 33 (3) ◽  
pp. 289 ◽  
Author(s):  
Ling-Ling Gao ◽  
F. Andrew Smith ◽  
Sally E. Smith

A tomato mutant with reduced mycorrhizal colonisation, rmc, confers resistance to almost all arbuscular mycorrhizal (AM) fungal species tested, although there is variation in colonisation of different root cell layers by different fungi and one species of AM fungus can colonise this mutant relatively normally. These variations indicate a high degree of specificity in relation to AM colonisation. We explored the possibility of specificity or otherwise in interactions between rmc and three non-AM root-infecting fungi, Rhizoctonia solani anastomosis groups (AG) 4 and AG8, and binucleate Rhizoctonia (BNR). There were no differences between the wild type tomato 76R and rmc in the speed or extent to which these fungi infected roots or caused disease. Infection by R. solani induced high levels of defence-related gene expression in both tomato genotypes relative to non-infected plants. In contrast, with BNR the expression of these genes was not induced or induced to a much lower extent than with R. solani. The expression of defence-related genes with these two non-AM fungi was very similar in the two plant genotypes. It was different from effects observed during colonisation by AM fungi, which enhanced expression of defence-related genes in rmc compared with the wild type tomato. The specificity and molecular mechanisms of rmc in control of AM colonisation are discussed.


Author(s):  
Mengbai Zhang ◽  
Huanan Su ◽  
Peter M. Gresshoff ◽  
Brett J. Ferguson

AbstractLegumes control their nodule numbers through the Autoregulation Of Nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development, and also acts to shape root system architecture via orchestrating the degree of root branching, as well as the length and thickness of lateral roots.


2010 ◽  
Vol 58 (1) ◽  
pp. 1-10 ◽  
Author(s):  
L. Novickienė ◽  
V. Gavelienė ◽  
L. Miliuvienė ◽  
D. Kazlauskienė ◽  
L. Pakalniškytė

The aim of this work was to investigate the formation and development of lateral roots in model trials on Arabidopsis thaliana L. Heynh wild type (Col-0), the alf4-1 mutant and its allele by applying the physiologically active auxin analogues IBA, IAA, TA-12 and TA-14.Differences were observed between the alf4-1 mutant and its allele phenotype in the formation of lateral roots. The application of auxin analogues was unable to restore the formation of lateral roots in the alf4-1 mutant. In some cases, under the impact of IBA (1 μM), a cluster of xylem cells was activated in the pericycle of the primary roots and lateral root primordia were formed. The auxin analogues induced the growth of primary roots in the alf4-1 allele and the formation and growth of lateral roots. The impact of IBA (1 μM), TA-12 (1 mM) and IAA (1 μM) was particularly evident. The intense formation of lateral roots under the impact of IBA and TA-12 could be related with the ability of these compounds to intensify mitotic activity in the apical meristem cells of the lateral roots. New data were obtained, showing that IBA and other physiologically active auxin analogues can modify the root system architecture of the test-plant Arabidopsis .


2020 ◽  
pp. jbc.RA120.014543
Author(s):  
Jordan M. Chapman ◽  
Gloria K. Muday

Flavonoids are a class of specialized metabolites with subclasses including flavonols and anthocyanins, which have unique properties as antioxidants. Flavonoids modulate plant development, but whether and how they impact lateral root development is unclear. We examined potential roles for flavonols in this process using Arabidopsis thaliana mutants with defects in genes encoding key enzymes in flavonoid biosynthesis. We observed the tt4 and fls1 mutants, which produce no flavonols, have increased lateral root emergence. The tt4 root phenotype was reversed by genetic and chemical complementation. To more specifically define the flavonoids involved, we tested an array of flavonoid biosynthetic mutants, eliminating roles for anthocyanins and the flavonols quercetin and isorhamnetin in modulating root development. Instead, two tt7 mutant alleles, with defects in a branchpoint enzyme blocking quercetin biosynthesis, formed reduced numbers of lateral roots, and tt7-2 had elevated levels of kaempferol. Using a flavonol-specific dye, we observed that in the tt7-2 mutant, kaempferol accumulated within lateral root primordia at higher levels than wild-type. These data are consistent with kaempferol, or downstream derivatives, acting as a negative regulator of lateral root emergence. We examined ROS accumulation using ROS-responsive probes and found reduced fluorescence of a superoxide-selective probe within the primordia of tt7-2 compared to wild type, but not in the tt4 mutant, consistent with opposite effects of these mutants on lateral root emergence. These results support a model in which increased level of kaempferol in the lateral root primordia of tt7-2 reduces superoxide concentration and ROS-stimulated lateral root emergence.


2019 ◽  
Vol 20 (3) ◽  
pp. 486 ◽  
Author(s):  
Hongwei Jing ◽  
Lucia Strader

The spacing and distribution of lateral roots are critical determinants of plant root system architecture. In addition to providing anchorage, lateral roots explore the soil to acquire water and nutrients. Over the past several decades, we have deepened our understanding of the regulatory mechanisms governing lateral root formation and development. In this review, we summarize these recent advances and provide an overview of how auxin and cytokinin coordinate the regulation of lateral root formation and development.


2020 ◽  
Author(s):  
Jordan M. Chapman ◽  
Gloria K. Muday

AbstractFlavonoids are plant-specific antioxidant compounds that modulate plant development, which include flavonols and anthocyanins subclasses. In Arabidopsis thaliana, mutants in genes encoding each step in the flavonoid biosynthetic pathway have been isolated. We used these mutants to examine the role of flavonols in initiation and emergence of lateral roots and asked whether this regulation occurs through scavenging ROS. The tt4 mutants have a defect in the first committed step of flavonoid biosynthesis and have increased lateral root emergence. This phenotype was reversed by both genetic and chemical complementation. Using these flavonoid biosynthetic mutants, we eliminated roles for anthocyanins and the flavonols, quercetin and isorhamnetin, in controlling lateral root development. The tt7-2 mutant has a defect in a branchpoint enzyme blocking quercetin biosynthesis that led to elevated levels of kaempferol and reduced lateral roots. Kaempferol accumulated within lateral root primordia and was significantly increased in tt7-2. Thee data are consistent with kaempferol acting as a negative regulator of lateral root emergence. We examined ROS accumulation above and within the primordia using a general ROS sensor and identified increased signal above the primordia of the tt4 and tt7-2 mutants compared to wild type. Using a superoxide specific sensor, we detected a decrease in signal within the primordia of tt7-2, but not the tt4 mutant, compared to wild type. Together, these results support a model in which increased level of kaempferol in tt7-2 leads to a reduction in superoxide concentration in the lateral root primordia thereby reducing ROS-stimulated lateral root emergence.


Sign in / Sign up

Export Citation Format

Share Document