scholarly journals Isolation of SARS-CoV-2 B.1.1.28.2 P2 variant and pathogenicity comparison with D614G variant in hamster model

2021 ◽  
Author(s):  
Pragya Yadav ◽  
Sreelekshmy Mohandas ◽  
Prasad Sarkale ◽  
Dimpal Nyayanit ◽  
Anita Shete ◽  
...  

Background: Considering the potential threat from emerging SARS-CoV-2 variants and the rising COVID-19 cases, SARS-CoV-2 genomic surveillance is ongoing in India. We report herewith the isolation of the P.2 variant (B.1.1.28.2) from international travelers and further its pathogenicity evaluation and comparison with D614G variant (B.1) in hamster model. Methods: Virus isolation was performed in Vero CCL81 cells and genomic characterization by next generation sequencing. The pathogenicity of the isolate was assessed in Syrian hamster model and compared with B.1 variant. Results: B.1.1.28.2 variant was isolated from nasal/throat swabs of international travelers returned to India from United Kingdom and Brazil. The B.1.1.28.2 variant induced body weight loss, viral replication in the respiratory tract, lung lesions and caused severe lung pathology in infected Syrian hamster model in comparison, with B.1 variant infected hamsters. The sera from B.1.1.28.2 infected hamsters efficiently neutralized the D614G variant virus whereas 6-fold reduction in the neutralization was seen in case of D614G variant infected hamsters sera with the B.1.1.28.2 variant. Conclusions: B.1.1.28.2 lineage variant could be successfully isolated and characterization could be performed. Pathogenicity of the isolate was demonstrated in Syrian hamster model and in comparison, with B.1 variant was found more pathogenic. The findings of increased disease severity and neutralization reduction is of great concern and point towards the need for screening the vaccines for efficacy.

2021 ◽  
Author(s):  
Zaigham Abbas Rizvi ◽  
Manas Ranjan Tripathy ◽  
Nishant Sharma ◽  
Sandeep Goswami ◽  
N Srikanth ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in upper respiratory tract leading to coronavirus disease 2019 (Covid-19). Severe Covid-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting entry of the virus or its internalization in the upper respiratory tract, are of interest. Herein, we report the prophylactic application of two intra-nasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and Til tailya in SARS-CoV2 infection hamster model. Prophylactic nasal instillation of these oil formulations exhibited reduced viral load in lungs, and resulted in reduced body weight loss and pneumonitis. In line with reduced viral load, histopathlogical analysis revealed a reduction in lung pathology in Anu oil group as compared to the control infected group. However, Til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokines genes, including Th1 and Th17 cytokines for both the intra-nasal formulations as a result of decreased viral load. Together, the prophylactic intra-nasal application of Annu oil seems to be useful in limiting both the viral load and disease severity disease in SARS-CoV2 infection in hamster model.


2021 ◽  
Author(s):  
Sreelekshmy Mohandas ◽  
Pragya D Yadav ◽  
Dimpal Nyayanit ◽  
Gururaj Deshpande ◽  
Anita Shete-Aich ◽  
...  

AbstractThe emergence of SARS-CoV-2 variants has posed a serious challenge to public health system and vaccination programs across the globe. We have studied the pathogenicity and virus shedding pattern of the SARS-CoV-2 VOC 202012/01 and compared with D614G variant in Syrian hamsters. VOC 202012/01 could produce disease in hamsters characterized by body weight loss and respiratory tract tropism but mild lung pathology. Further, we also documented that neutralizing antibodies developed against VOC 202012/01 could equally neutralize D614G variant. Higher load of VOC 202012/01 in the nasal wash specimens was observed during the first week of infection outcompeting the D614G variant. The findings suggest increased fitness of VOC 202012/01 to the upper respiratory tract which could lead to higher transmission. Further investigations are needed to understand the transmissibility of new variants.One-Sentence SummarySARS-CoV-2 VOC 202012/01 infected hamsters demonstrated high viral RNA shedding through the nasal secretions and significant body weight loss with mild lung pathology compared to the D614G variant.


Author(s):  
Jasper Fuk-Woo Chan ◽  
Anna Jinxia Zhang ◽  
Shuofeng Yuan ◽  
Vincent Kwok-Man Poon ◽  
Chris Chung-Sing Chan ◽  
...  

Abstract Background A physiological small-animal model that resembles COVID-19 with low mortality is lacking. Methods Molecular docking on the binding between angiotensin-converting enzyme 2 (ACE2) of common laboratory mammals and the receptor-binding domain of the surface spike protein of SARS-CoV-2 suggested that the golden Syrian hamster is an option. Virus challenge, contact transmission, and passive immunoprophylaxis studies were performed. Serial organ tissues and blood were harvested for histopathology, viral load and titer, chemokine/cytokine level, and neutralizing antibody titer. Results The Syrian hamster could be consistently infected by SARS-CoV-2. Maximal clinical signs of rapid breathing, weight loss, histopathological changes from the initial exudative phase of diffuse alveolar damage with extensive apoptosis to the later proliferative phase of tissue repair, airway and intestinal involvement with viral nucleocapsid protein expression, high lung viral load, and spleen and lymphoid atrophy associated with marked chemokine/cytokine activation were observed within the first week of virus challenge. The mean lung virus titer was between 105 and 107 TCID50/g. Challenged index hamsters consistently infected naive contact hamsters housed within the same cages, resulting in similar pathology but not weight loss. All infected hamsters recovered and developed mean serum neutralizing antibody titers ≥1:427 14 days postchallenge. Immunoprophylaxis with early convalescent serum achieved significant decrease in lung viral load but not in lung pathology. No consistent nonsynonymous adaptive mutation of the spike was found in viruses isolated from the infected hamsters. Conclusions Besides satisfying Koch’s postulates, this readily available hamster model is an important tool for studying transmission, pathogenesis, treatment, and vaccination against SARS-CoV-2.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 824
Author(s):  
Nora M. Gerhards ◽  
Jan B. W. J. Cornelissen ◽  
Lucien J. M. van Keulen ◽  
José Harders-Westerveen ◽  
Rianka Vloet ◽  
...  

In assessing species susceptibility for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and in the search for an appropriate animal model, multiple research groups around the world inoculated a broad range of animal species using various SARS-CoV-2 strains, doses and administration routes. Although in silico analyses based on receptor binding and diverse in vitro cell cultures were valuable, exact prediction of species susceptibility based on these tools proved challenging. Here, we assessed whether precision-cut lung slices (PCLS) could facilitate the selection of animal models, thereby reducing animal experimentation. Pig, hamster and cat PCLS were incubated with SARS-CoV-2 and virus replication was followed over time. Virus replicated efficiently in PCLS from hamsters and cats, while no evidence of replication was obtained for pig PCLS. These data corroborate the findings of many research groups that have investigated the susceptibility of hamsters, pigs and cats towards infection with SARS-CoV-2. Our findings suggest that PCLS can be used as convenient tool for the screening of different animal species for sensitivity to newly emerged viruses. To validate our results obtained in PCLS, we employed the hamster model. Hamsters were inoculated with SARS-CoV-2 via the intranasal route. Susceptibility to infection was evaluated by body weight loss, viral loads in oropharyngeal swabs and respiratory tissues and lung pathology. The broadly used hamster model was further refined by including activity tracking of the hamsters by an activity wheel as a very robust and sensitive parameter for clinical health. In addition, to facilitate the quantification of pathology in the lungs, we devised a semi-quantitative scoring system for evaluating the degree of histological changes in the lungs. The inclusion of these additional parameters refined and enriched the hamster model, allowing for the generation of more data from a single experiment.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2506
Author(s):  
Julia R. Port ◽  
Danielle R. Adney ◽  
Benjamin Schwarz ◽  
Jonathan E. Schulz ◽  
Daniel E. Sturdevant ◽  
...  

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


2021 ◽  
Author(s):  
Thomas J Esparza ◽  
Yaozong Chen ◽  
Negin P Martin ◽  
Helle Bielefeldt-Ohmann ◽  
Richard A Bowen ◽  
...  

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses, including the currently dominant Delta variant. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Julia R Port ◽  
Danielle R Adney ◽  
Benjamin Schwarz ◽  
Jonathan Schulz ◽  
Daniel E Sturdevant ◽  
...  

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an increased trend of systemic IL-10 and IL-6, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Zaigham Abbas Rizvi ◽  
Rajdeep Dalal ◽  
Srikanth Sadhu ◽  
Akshay Binayke ◽  
Jyotsna Dandotiya ◽  
...  

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in the Golden Syrian hamster causes lung pathology that resembles human coronavirus disease (COVID-19). However, extra-pulmonary pathologies associated with SARS-CoV-2 infection and post COVID sequelae remain to be understood. Here we show, using a hamster model, that the early phase of SARS-CoV-2 infection leads to an acute inflammatory response and lung pathologies, while the late phase of infection causes cardiovascular complications (CVC) characterized by ventricular wall thickening associated with increased ventricular mass/ body mass ratio and interstitial coronary fibrosis. Molecular profiling further substantiated our findings of CVC, as SARS-CoV-2-infected hamsters showed elevated levels of serum cardiac Troponin-I (cTnI), cholesterol, low-density lipoprotein and long-chain fatty acid triglycerides. Serum metabolomics profiling of SARS-CoV-2-infected hamsters identified N-acetylneuraminate, a functional metabolite found to be associated with CVC, as a metabolic marker was found to be common between SARS-CoV-2-infected hamsters and COVID-19 patients. Together, we propose hamsters as a suitable animal model to study post-COVID sequelae associated with CVC which could be extended to therapeutic interventions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zaigham Abbas Rizvi ◽  
Manas Ranjan Tripathy ◽  
Nishant Sharma ◽  
Sandeep Goswami ◽  
N Srikanth ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009383
Author(s):  
Drishya Kurup ◽  
Delphine C. Malherbe ◽  
Christoph Wirblich ◽  
Rachael Lambert ◽  
Adam J. Ronk ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Sign in / Sign up

Export Citation Format

Share Document