scholarly journals Chronic distress in male mice impairs motivation compromising both effort and reward processing with altered anterior insular cortex and basolateral amygdala neural activation

2021 ◽  
Author(s):  
Lidia Cabeza ◽  
Bahrie Ramadan ◽  
Stephanie Cramoisy ◽  
Christophe Houdayer ◽  
Emmanuel Haffen ◽  
...  

In humans and mammals, effort-based decision-making for monetary or food rewards paradigms contribute to the study of adaptive goal-directed behaviours acquired through reinforcement learning. Chronic distress modelled by repeated exposure to glucocorticoids in rodents induces suboptimal decision-making under uncertainty by impinging on instrumental acquisition and prompting negative valence behaviours. In order to further disentangle the motivational tenets of adaptive decision-making, this study addressed the consequences of enduring distress on relevant effort and reward processing dimensions. Experimentally, appetitive and consummatory components of motivation were evaluated in adult C57BL/6JRj male mice experiencing chronic distress induced by oral corticosterone (CORT), using multiple complementary discrete behavioural tests. Behavioural data (from Novelty Supressed Feeding, operant effort-based choice, Free Feeding and Sucrose Preference tasks) collectively show that behavioural initiation, effort allocation and hedonic appreciation and valuation are altered in mice exposed to several weeks of oral CORT treatment. Additionally, data analysis from FosB immunohistochemical processing of postmortem brain samples highlight a CORT-dependent dampening of neural activation in the anterior insular cortex (aIC) and basolateral amygdala (BLA), key telencephalic brain regions involved in cue appetitive and consummatory motivational processing. Combined, these results suggest that chronic distress-induced irregular aIC and BLA neural activations with reduced effort production and attenuated reward value processing during reinforcement-based instrumental learning could result in maladaptive decision-making under uncertainty. The current study further illustrates how the stoichiometry of effort and reward processing contributes to dynamically adjust the motivational threshold triggering goal-directed behaviours in versatile environments.

2021 ◽  
Vol 15 ◽  
Author(s):  
Lidia Cabeza ◽  
Bahrie Ramadan ◽  
Stephanie Cramoisy ◽  
Christophe Houdayer ◽  
Emmanuel Haffen ◽  
...  

In humans and mammals, effort-based decision-making for monetary or food rewards paradigms contributes to the study of adaptive goal-directed behaviours acquired through reinforcement learning. Chronic distress modelled by repeated exposure to glucocorticoids in rodents induces suboptimal decision-making under uncertainty by impinging on instrumental acquisition and prompting negative valence behaviours. In order to further disentangle the motivational tenets of adaptive decision-making, this study addressed the consequences of enduring distress on relevant effort and reward-processing dimensions. Experimentally, appetitive and consummatory components of motivation were evaluated in adult C57BL/6JRj male mice experiencing chronic distress induced by oral corticosterone (CORT), using multiple complementary discrete behavioural tests. Behavioural data (from novelty suppressed feeding, operant effort-based choice, free feeding, and sucrose preference tasks) collectively show that behavioural initiation, effort allocation, and hedonic appreciation and valuation are altered in mice exposed to several weeks of oral CORT treatment. Additionally, data analysis from FosB immunohistochemical processing of postmortem brain samples highlights CORT-dependent dampening of neural activation in the anterior insular cortex (aIC) and basolateral amygdala (BLA), key telencephalic brain regions involved in appetitive and consummatory motivational processing. Combined, these results suggest that chronic distress-induced irregular aIC and BLA neural activations with reduced effort production and attenuated reward value processing during reinforcement-based instrumental learning could result in maladaptive decision-making under uncertainty. The current study further illustrates how effort and reward processing contribute to adjust the motivational threshold triggering goal-directed behaviours in versatile environments.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S12-S13
Author(s):  
Oliver Howes ◽  
Abhishekh Ashok ◽  
Ekaterina Shatalina ◽  
Eugenii Rabiner ◽  
Tiago Reis Marques

Abstract Background The neurobiological mechanisms underlying anhedonia and other negative symptoms in schizophrenia are unknown. Understanding this would help identify treatments for these symptoms. Pre-clinical and human evidence shows the mu-opioid receptor plays a key role in reward processing and anhedonia. However, the contribution of Mu Opioid Receptor (MOR) signalling to negative symptoms and the reward processing abnormalities in schizophrenia is unknown. Here, we investigated for the first time in vivo in patients whether MOR availability is altered in schizophrenia and if this is associated with the neural processes underlying reward anticipation in patients with schizophrenia using multimodal neuroimaging. Methods Forty volunteers (n=20 patients with schizophrenia and 20 age and sex-matched healthy controls) received an [11C]-carfentanil PET scan to measure MOR availability, a structural MRI scan and a functional MRI scan while performing the Monetary Incentive Delay (MID) task to measure the neural response to reward anticipation. All the patients met criteria for persistent negative symptoms. Our primary ROI for the PET analysis was the striatum. In addition, we analysed MOR availability in brain regions in the hedonic network (the striatum, insula and anterior cingulate cortex). The fMRI analysis focused on brain regions in this hedonic network as these have previously associated with MOR mediated reward processing in humans and preclinical studies. Brain volumes of regions of interest (ROIs) were also extracted. Results The analysis showed significantly lower MOR availability in the striatum of patients with schizophrenia relative to controls (patients vs. controls (mean binding potential (BPND) ± SEM): 1.54 ± 0.06 vs. 1.7 ± 0.05, Cohen’s d= 0.7, t=-2.2, df (37), p<0.05). There was also a significant effect of both group (F (5, 222) = 334.5, p<0.05) and ROI (F (1, 222) = 5.65, p<0.05) on BPND measures in the hedonic brain network. The group* ROI interaction was not significant (F (5, 222) = 0.2167, p>0.05). There were no significant differences in the volume of the striatum or other brain regions between groups (patients vs controls: mean ± SEM (mm3) 13019 ± 302 vs 12937 ± 327 respectively, p = 0.86). Reward anticipation in controls was associated with increased neural activation in a widespread network of brain regions including the ventral striatum and insula. The activation in the ventral striatum was significantly lower in patients compared to healthy controls. MOR availability was positively correlated with neural activation in the insula during reward anticipation in controls (spearman’s rho=0.6, p=0.006) but not in patients (spearman’s rho=0.13, p=0.57). In contrast, MOR availability in the striatum was not associated with neural activation in the striatum. Discussion These data show for the first time in vivo that mu-opioid receptor availability is lower in schizophrenia across the hedonic brain network. Moreover, patients with schizophrenia show altered coupling between mu-opioid signalling in the insula and brain activation during reward anticipation. These findings identify the mu-opioid receptor as a potential therapeutic target for reward dysfunction in schizophrenia.


2020 ◽  
Author(s):  
Goldie A. McQuaid ◽  
Valerie L. Darcey ◽  
Amanda E. Patterson ◽  
Emma J. Rose ◽  
John W. VanMeter ◽  
...  

ABSTRACTIdentifying brain and behavioral precursors to substance use (SU) may guide interventions that delay initiation in youth at risk for SU disorders (SUD). Heightened reward-sensitivity and risk-taking may confer risk for SUD. In a longitudinal, prospective study, we characterized behavioral and neural profiles associated with reward-sensitivity and risk-taking in substance-naïve adolescents, examining whether they differed as a function of SU initiation at 18- and 36-months follow-up.Adolescents (N=70; 11.1-14.0 years) completed a reward-related decision-making task (Wheel of Fortune (WOF)) while undergoing functional MRI. Measures of reward sensitivity (Behavioral Inhibition System-Behavioral Approach System; BIS-BAS), impulsive decision-making (delay discounting task), and SUD risk (Drug Use Screening Inventory, Revised (DUSI-R)) were collected at baseline. Baseline metrics were compared for youth who did (SI; n=27) and did not (SN; n=43) initiate SU at follow-up.While groups displayed similar discounting and risk taking behavior, SI youth showed more variable patterns of activation in left insular cortex during high-risk selections, and left anterior cingulate cortex in response to rewarded outcomes. SI participants scored higher on the DUSI-R and BAS subscales. Results suggest differences in brain regions critical in the development and experience of SUDs may precede SU and serve as a biomarker for SUD risk.


2018 ◽  
Vol 52 (1/2) ◽  
pp. 118-146 ◽  
Author(s):  
Marco Hubert ◽  
Mirja Hubert ◽  
Marc Linzmajer ◽  
René Riedl ◽  
Peter Kenning

Purpose The purpose of this study is to examine how consumer personality trait impulsiveness influences trustworthiness evaluations of online-offers with different trust-assuring and trust-reducing elements by measuring the brain activity of consumers. Shoppers with high degrees of impulsiveness are referred to as hedonic shoppers, and those with low degrees are referred to as prudent consumers. Design/methodology/approach To investigate the differences between neural processes in the brains of hedonic and prudent shoppers during the trustworthiness evaluation of online-offers, the present study used functional magnetic resonance imaging (fMRI) and region-of-interest analysis to correlate neural activity patterns with behavioral measures of the study participants. Findings Drawing upon literature reviews on the neural correlates of both trust in online settings and consumer impulsiveness and using an experimental design that links behavioral and fMRI data, the study shows that consumer impulsiveness can exert a significant influence on the evaluation of online-offers. With regard to brain activation, both groups (hedonic and prudent shoppers) exhibit similar neural activation tendencies, but differences exist in the magnitude of activation patterns in brain regions that are closely related to trust and impulsiveness such as the dorsal striatum, anterior cingulate, the dorsolateral prefrontal cortex and the insula cortex. Research limitations/implications The data provide evidence that consumers within the hedonic group evaluate online-offers differently with regard to their trustworthiness compared to the prudent group, and that these differences in evaluation are rooted in neural activation differences in the shoppers’ brains. Practical implications Marketers need to be made aware of the fact that neurological insights can be used for market segmentation, because consumers’ decision-making processes help explain behavioral outcomes (here, trustworthiness evaluations of online-offers). In addition, consumers can learn from an advanced understanding of their brain functions during decision-making and their relation to personal traits such as impulsiveness. Originality/value Considering the importance of trust in online shopping, as well as the fact that personality traits such as impulsiveness influence the purchase process to a high degree, this study is the first to systematically investigate the interplay of online trustworthiness perceptions and differences in consumer impulsiveness with neuroscientific methods.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Elvi Gil-Lievana ◽  
Israela Balderas ◽  
Perla Moreno-Castilla ◽  
Jorge Luis-Islas ◽  
Ross A. McDevitt ◽  
...  

2021 ◽  
Author(s):  
Tomasz Zaleskiewicz ◽  
Jakub Traczyk ◽  
Agata Sobkow ◽  
Kamil Fulawka ◽  
Alberto Megías-Robles

Abstract In the present study, we used a neuroimaging technique (fMRI) to test the prediction that visualizing risky behaviors induces a stronger neural response in brain areas responsible for emotions and mental imagery than visualizing neutral behaviors. We identified several brain regions that were activated when participants produced mental images of risky versus neutral behaviors and these regions overlap with brain areas engaged in visual mental imagery, speech imagery and movement imagery. We also found that producing mental images of risky behaviors, in contrast to neutral behaviors, increased neural activation in the insula – a region engaged in emotional processing. This finding is in line with previous results demonstrating that the insula is recruited by tasks involving induction of emotional recall/imagery. Finally, we observed an increased BOLD signal in the cingulate gyrus (mid-cingulate area), which is associated with reward-based decision making and monitoring of decision outcomes. In summary, we demonstrated that mental images of risky behaviors, compared to risk-free behaviors, increased neural activation in brain areas engaged in mental imagery processes, emotional processing and decision making. These findings imply that the evaluation of everyday risky situations may originate in visualizing the potential consequences of risk taking and may be driven by emotional responses that result from mental imagery.


2021 ◽  
Author(s):  
Ayal Lavi ◽  
Megha Sehgal ◽  
Fardad Sisan ◽  
Anna Okabe ◽  
Donara Ter-Mkrtchyan ◽  
...  

Memories engage ensembles of neurons across different brain regions within a memory system. However, it is unclear whether the allocation of a memory to these ensembles is coordinated across brain regions. To address this question, we used CREB expression to bias memory allocation in one brain region, and rabies retrograde tracing to test memory allocation in connected presynaptic neurons in the other brain regions. We find that biasing allocation of CTA memory in the basolateral amygdala (BLA) also biases memory allocation in presynaptic neurons of the insular cortex (IC). By manipulating the allocation of CTA memory to specific neurons in both BLA and IC, we found that we increased their connectivity and enhanced CTA memory performance. These results, which are corroborated by mathematical simulations and by studies with auditory fear conditioning, demonstrate that a retrograde mechanism coordinates the allocation of memories across different brain regions.


2021 ◽  
Author(s):  
Ho Namkung ◽  
Sedona Lockhart ◽  
Josephine de Chabot ◽  
Lauren Guttman ◽  
Imad Isehak ◽  
...  

Learning about potential threats in the environment is indispensable for survival. Deficits in threat learning constitute a key dimension of multiple brain disorders, which include posttraumatic stress disorder and anxiety disorder. While human brain imaging studies have highlighted a reliable engagement of the anterior insular cortex (AIC) in threat learning, its precise role remains elusive partly due to the lack of animal studies that can address causality and mechanistic questions. Filling in this gap, the present mouse study proposes a novel AICmediated mechanism underlying the association of temporally discontiguous stimuli during threat learning. We identified that activity of AIC layer 5 (L5) pyramidal neurons is required for associating temporally discontiguous stimuli, specifically during a time interval between them. Notably, the AIC is not required for associating temporally contiguous stimuli during threat learning. The AIC not only sends the essential information, via its L5 pyramidal neurons, to the basolateral amygdala (BLA) during the time interval, but also receives from the BLA. We also identified a modulatory role of AIC dopamine D1 receptor (D1R)-mediated dopamine signaling in associating temporally discontiguous stimuli during the time interval.


2019 ◽  
Author(s):  
Romy Frömer ◽  
Carolyn K. Dean Wolf ◽  
Amitai Shenhav

AbstractHow we engage with a set of options (e.g., items on a menu) is affected both by the rewards they promise and our goal in choosing between them. Typically, our goal is to maximize potential reward and minimize potential punishment. Previous research on value-based decision-making has characterized how people make decisions with this goal in mind, identifying consistent behavioral and neural signatures associated with how rewarding a set of choice options are, overall and relative to one another. However, these studies suffer from a common confound: in each case, more rewarding options were also more congruent with one’s goal of choosing the best option. Previous findings can therefore be accounted for by the reward value or the goal congruency of one’s options. To compare these accounts directly, we had participants make choices while their goal varied between choosing the best or the worst option, resulting in situations where either high-reward or low-reward options were most goal-congruent. We found that goal congruency uniquely accounts for past observations that decision speed varies with the overall value of one’s options. Within brain regions commonly associated with choice value, fMRI activity was associated with both relative and overall goal congruency. These goal congruency correlates were dissociable from separate correlates of the overall reward associated with a choice set (independent of one’s goal). Our findings call for a reinterpretation of previous research on value-based choice, and offer an approach moving forward for disentangling the roles of rewards and goals in how we evaluate our options.Significance StatementWhether it is between restaurants or career paths, to make adaptive decisions we must evaluate our options and identify those that are most conducive to our current goal. Dysfunctional decision-making can therefore result from aberrant reward processing (e.g., impulse disorders) or from aberrant goal processing (e.g., OCD, ADHD). By focusing only on how people choose their favorite option in a choice set (when rewards and goals are aligned), past research has been unable to distinguish the degree to which behavior and neural activity are determined by reward versus goal processing. We disentangle these processes and show that behavior and fMRI activity are differentially influenced by the promised rewards versus the degree to which those rewards align with one’s current goal.


2020 ◽  
Author(s):  
Emily Heffernan ◽  
Juliana Daphne Adema ◽  
Michael Louis Mack

Successful categorization requires a careful coordination of attention, representation, and decision making. Comprehensive theories that span levels of analysis are key to understanding the computational and neural dynamics of categorization. Here, we build on recent work linking neural representations of category learning to computational models to investigate how category decision making is driven by neural signals across the brain. We uniquely combine functional magnetic resonance imaging with drift diffusion and exemplar-based categorization models to show that trial-by-trial fluctuations in neural activation from regions of occipital, cingulate, and lateral prefrontal cortices are linked to category decisions. Notably, only lateral prefrontal cortex activation was associated with exemplar-based model predictions of trial-by-trial category evidence. We propose that these brain regions underlie distinct functions that contribute to successful category learning.


Sign in / Sign up

Export Citation Format

Share Document