scholarly journals Peptide-based inhibitors of Tau aggregation as a potential therapeutic for Alzheimer's disease and other Tauopathies

2021 ◽  
Author(s):  
Anthony Aggidis ◽  
Shreyasi Chatterjee ◽  
David Townsend ◽  
Nigel J Fullwood ◽  
Eva Ruiz Ortega ◽  
...  

There are currently no disease altering drugs available for Tauopathies such as Alzheimer's disease, which alone is predicted to affect ~88 million people worldwide by 2050. As Tau aggregation underpins its toxicity, aggregation inhibitors are likely to have disease-modifying potential. Guided by in-silico mutagenesis studies, we developed a potent retro-inverso peptide inhibitor of Tau aggregation, RI-AG03 [AcrrrrrrrrGpkyk( ac)iqvGr-NH2], based on the 306VQIVYK311 hotspot. Aggregation of recombinant Tau was reduced by >90% with equimolar RI-AG03 and no fibrils were observed by EM. When added during the growth phase, RI-AG03 blocked seeded aggregation. Fluorescein-tagged RI-AG03 efficiently penetrated HEK-293 cells over 24 hours and was non-toxic at doses up to 30 μM. In transgenic Drosophila, RI-AG03 significantly improves neurodegenerative and behavioural phenotypes caused by expression of human Tau. Collectively this shows that RI-AG03 can effectively reduce Tau aggregation in vitro and block aggregationdependent phenotypes in vivo, raising possibilities for exploring its translational potential.

2019 ◽  
Vol 18 (5) ◽  
pp. 352-365 ◽  
Author(s):  
Fahad Ali ◽  
Yasir Hasan Siddique

Luteolin is a naturally occurring, yellow crystalline flavonoid found in numerous dietary supplements we frequently have in our meals. Studies in the last 2 decades have revealed its therapeutic potential to reduce the Alzheimer’s disease (AD) symptoms in various in vitro and in vivo models. The anti-Alzheimer’s potential of luteolin is attributed to its ability to suppress Aβ as well as tau aggregation or promote their disaggregation, down-regulate the expression of COX-2, NOS, MMP-9, TNF-α, interleukins and chemokines, reduce oxidative stress by scavenging ROS, modulate the activities of transcription factors CREB, cJun, Nrf-1, NF-κB, p38, p53, AP-1 and β-catenine and inhibiting the activities of various protein kinases. In several systems, luteolin has been described as a potent antioxidant and anti-inflammatory agent. In addition, we have also discussed about the bio-availability of the luteolin in the plasma. After being metabolized luteolin persists in plasma as glucuronides and sulphate-conjugates. Human clinical trials indicated no dose limiting toxicity when administered at a dose of 100 mg/day. Improvements in the formulations and drug delivery systems may further enhance the bioavailability and potency of luteolin. The current review describes in detail the data supporting these studies.


2019 ◽  
Vol 139 (1) ◽  
pp. 3-25 ◽  
Author(s):  
Morvane Colin ◽  
Simon Dujardin ◽  
Susanna Schraen-Maschke ◽  
Guy Meno-Tetang ◽  
Charles Duyckaerts ◽  
...  

Abstract The term “propagon” is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various “tauopathies” that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer’s disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer’s pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer’s disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.


2020 ◽  
Vol 26 (15) ◽  
pp. 1682-1692
Author(s):  
Kadja L.C. Monteiro ◽  
Marcone G. dos S. Alcântara ◽  
Thiago M. de Aquino ◽  
Edeildo F. da Silva-Júnior

: Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging use in in vivo and clinical trials support their potential therapeutic use in AD.


2019 ◽  
Author(s):  
Absar Ahmad ◽  
Subashchandrabose Chinnathambi

The Alzheimer’s disease (AD) therapeutic research is yielding large number of potent molecules. The nanoparticle-based therapeutics against the protein aggregation in AD is also taking a lead especially with amyloid beta as a primary target. In this work, we have screened for first time, the protein capped (PC) metal nanoparticles for their potency in inhibiting Tau aggregation in vitro. We present a novel function of PC-CdS nanoparticles as a potent Tau aggregation inhibitor by fluorescence spectrometry, SDS-PAGE and Electron microscopy. We demonstrate that the biologically synthesized PC-metal nanoparticles, iron oxide and cadmium sulphide do not affect the viability of neuroblastoma cells. Moreover, PC-CdS nanoparticles show dual property of inhibition as well as disaggregation of Tau. Thus, the nanoparticles can take a lead as potent Tau aggregation inhibitors and can be modified for specific drug delivery due to very small size. This current work presents unprecedented strategy to design anti-Tau aggregation drugs, which provides interesting insights to understand the role of biological nanostructures in Alzheimer’s disease.


2019 ◽  
Author(s):  
Absar Ahmad ◽  
Subashchandrabose Chinnathambi

The Alzheimer’s disease (AD) therapeutic research is yielding large number of potent molecules. The nanoparticle-based therapeutics against the protein aggregation in AD is also taking a lead especially with amyloid beta as a primary target. In this work, we have screened for first time, the protein capped (PC) metal nanoparticles for their potency in inhibiting Tau aggregation in vitro. We present a novel function of PC-CdS nanoparticles as a potent Tau aggregation inhibitor by fluorescence spectrometry, SDS-PAGE and Electron microscopy. We demonstrate that the biologically synthesized PC-metal nanoparticles, iron oxide and cadmium sulphide do not affect the viability of neuroblastoma cells. Moreover, PC-CdS nanoparticles show dual property of inhibition as well as disaggregation of Tau. Thus, the nanoparticles can take a lead as potent Tau aggregation inhibitors and can be modified for specific drug delivery due to very small size. This current work presents unprecedented strategy to design anti-Tau aggregation drugs, which provides interesting insights to understand the role of biological nanostructures in Alzheimer’s disease.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 β (GSK3β), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer's disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


Sign in / Sign up

Export Citation Format

Share Document