scholarly journals Correlation in Domain Fluctuations Navigates Target Search of a Viral Peptide along RNA

2021 ◽  
Author(s):  
Sangram Prusty ◽  
Raju Sarkar ◽  
Susmita Roy

Biological macromolecules often exhibit correlation in fluctuations involving distinct domains. This study decodes their functional implications in RNA-protein recognition and target-specific binding. The target search of a peptide along RNA in viral TAR-Tat complex is closely monitored using atomistic simulations, steered molecular dynamics simulations, free energy calculations, and a machine-learning-based clustering technique. An anti-correlated domain fluctuation is identified between the tetraloop and the bulge region in the apo form of TAR RNA that sets a hierarchy in the domain-specific fluctuations at each binding event and that directs succeeding binding footsteps. Thus, at each binding footstep, the dynamic partner selects an RNA location for binding where it senses higher fluctuation, which is conventionally reduced upon binding. This event stimulates an alternate domain- fluctuation which then dictates sequential binding footstep/s and thus, the search progresses. Our cross-correlation maps show that the fluctuations relay from one domain to another specific domain till the anti-correlation between that inter-domain fluctuations sustains. Artificial attenuation of that hierarchical domain fluctuation inhibits specific RNA binding. The binding is completed with the arrival of a few long-lived water molecules that mediate slightly distant RNA-protein sites and finally stabilizes the overall complex. The study underscores the functional importance of naturally designed fluctuating RNA motifs (bulge, tetraloop) and their interplay in dictating the directionality of the search in a highly dynamic environment.

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Alejandro Gil L. ◽  
Pedro A. Valiente ◽  
Pedro G. Pascutti ◽  
Tirso Pons

The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.


2020 ◽  
Vol 26 (42) ◽  
pp. 7598-7622 ◽  
Author(s):  
Xiao Hu ◽  
Irene Maffucci ◽  
Alessandro Contini

Background: The inclusion of direct effects mediated by water during the ligandreceptor recognition is a hot-topic of modern computational chemistry applied to drug discovery and development. Docking or virtual screening with explicit hydration is still debatable, despite the successful cases that have been presented in the last years. Indeed, how to select the water molecules that will be included in the docking process or how the included waters should be treated remain open questions. Objective: In this review, we will discuss some of the most recent methods that can be used in computational drug discovery and drug development when the effect of a single water, or of a small network of interacting waters, needs to be explicitly considered. Results: Here, we analyse the software to aid the selection, or to predict the position, of water molecules that are going to be explicitly considered in later docking studies. We also present software and protocols able to efficiently treat flexible water molecules during docking, including examples of applications. Finally, we discuss methods based on molecular dynamics simulations that can be used to integrate docking studies or to reliably and efficiently compute binding energies of ligands in presence of interfacial or bridging water molecules. Conclusions: Software applications aiding the design of new drugs that exploit water molecules, either as displaceable residues or as bridges to the receptor, are constantly being developed. Although further validation is needed, workflows that explicitly consider water will probably become a standard for computational drug discovery soon.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008988
Author(s):  
Nikolina ŠoŠtarić ◽  
Vera van Noort

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.


2020 ◽  
Author(s):  
Jiajun Wang ◽  
Jigneshkumar Dahyabhai Prajapati ◽  
Ulrich Kleinekathöfer ◽  
Mathias Winterhalter

The effect of divalent ions on the permeability of norfloxacin across the major outer membrane channels from <i>E. coli</i> (OmpF, OmpC) and <i>E. aerogenes</i> (Omp35, Omp36) has been investigated at the single channel level. To understand the rate limiting steps in permeation, we reconstituted single porin into planar lipid bilayers and analyzed the ion current fluctuations caused in the presence of norfloxacin. To obtain an atomistic view, we complemented the experiments with millisecond-long free energy calculations based on temperature-accelerated Brownian dynamics simulations to identify the most probable permeation pathways of the antibiotics through the respective pore. Both, experimental analysis and computational modelling, suggest that norfloxacin is able to permeate through the larger porins, i.e., OmpF, OmpC, and Omp35, whereas it only binds to the slightly narrower porin Omp36. Moreover, divalent ions can bind to negatively charged residues inside the porin, reversing the ion selectivity of the pore. In addition, the divalent ions can chelate with the fluoroquinolones and alter their physicochemical properties. The results suggest that the conjugation must break with either one of them when the antibiotics molecules bypass the lumen of the porin, with the conjugation to the antibiotic being more stable than that to the pore. In general, the permeation or binding process of fluoroquinolone in porins occurs irrespective of the presence of divalent ions, but the presences of divalent ions can vary the kinetics significantly.


2021 ◽  
Author(s):  
Giulia Biancon ◽  
Poorval Joshi ◽  
Joshua T Zimmer ◽  
Torben Hunck ◽  
Yimeng Gao ◽  
...  

AbstractSomatic mutations in splicing factors are of significant interest in myeloid malignancies and other cancers. U2AF1, together with U2AF2, is essential for 3’ splice site recognition. U2AF1 mutations result in aberrant splicing, but the molecular mechanism and the full spectrum of consequences on RNA biology have not been fully elucidated to date. We performed multi-omics profiling of in vivo RNA binding, splicing and turnover for U2AF1 S34F and Q157R mutants. We dissected specific binding signals of U2AF1 and U2AF2 and showed that U2AF1 mutations individually alter U2AF1-RNA binding, resulting in defective U2AF2 recruitment. We demonstrated a complex relationship between differential binding and splicing, expanding upon the currently accepted loss-of-binding model. Finally, we observed that U2AF1 mutations increase the formation of stress granules in both cell lines and primary acute myeloid leukemia samples. Our results uncover U2AF1 mutation-dependent pathogenic RNA mechanisms and provide the basis for developing targeted therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document