scholarly journals Transcriptomic similarities and differences between mouse models and human Alzheimer's Disease

2021 ◽  
Author(s):  
Marco Ant&ocircnio De Bastiani ◽  
Bruna Bellaver ◽  
Giovanna Collar ◽  
Stefania Forner ◽  
Alessandra Cadete Martini ◽  
...  

Alzheimer's disease (AD) is a multifactorial pathology responsible for most cases of dementia worldwide. Only a small percentage of AD cases are due to autosomal dominant mutations, while the vast majority have a sporadic presentation. Yet, preclinical research studies relied for decades on animal models that overexpress human genes found in AD autosomal dominant patients. Thus, one could argue that these models do not recapitulate sporadic AD. To avoid human gene overexpression artifacts, knock-in (KI) models have been developed, such as the novel hAβ-KI mouse model, which are still in early phases of characterization. We hypothesize that comparisons at the transcriptomic level may elucidate critical similarities and differences between transgenic/KI models and AD patients. Thus, we aimed at comparing the hippocampal transcriptomic profiling of overexpression (5xFAD and APP/PS1) and KI (hAβ-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients. We first evaluated differentially expressed genes (DEGs) and Gene Ontology biological processes (GOBP) overlapping cross-species. After, we explored a network-based strategy to identify master regulators (MR) and the similarities of such elements among models and AD subtypes. A multiple sclerosis (MS) dataset was included to test the molecular specificity of the mouse models to AD. Our analysis revealed that all three mouse models presented more DEGs, GOBP terms and enriched signaling pathways in common with LOAD than with EOAD subjects. Furthermore, semantic similarity of enriched GOBP terms showed mouse model-specific biological alterations, and protein-protein interaction analysis of DEGs identified clusters of genes exclusively shared between hAβ-KI mice and LOAD. Furthermore, we identified 17 transcription factor candidates potentially acting as MR of AD in all three models. Finally, though all mouse models showed transcriptomic similarities to LOAD, hAβ-KI mice presented a remarkable specificity to this AD subtype, which might support the use of the novel hAβ-KI mouse model to advance our understanding of sporadic LOAD.

2021 ◽  
Vol 15 ◽  
Author(s):  
Meelim J. Lee ◽  
Chuangqi Wang ◽  
Molly J. Carroll ◽  
Douglas K. Brubaker ◽  
Bradley T. Hyman ◽  
...  

Mouse models are vital for preclinical research on Alzheimer’s disease (AD) pathobiology. Many traditional models are driven by autosomal dominant mutations identified from early onset AD genetics whereas late onset and sporadic forms of the disease are predominant among human patients. Alongside ongoing experimental efforts to improve fidelity of mouse model representation of late onset AD, a computational framework termed Translatable Components Regression (TransComp-R) offers a complementary approach to leverage human and mouse datasets concurrently to enhance translation capabilities. We employ TransComp-R to integratively analyze transcriptomic data from human postmortem and traditional amyloid mouse model hippocampi to identify pathway-level signatures present in human patient samples yet predictive of mouse model disease status. This method allows concomitant evaluation of datasets across different species beyond observational seeking of direct commonalities between the species. Additional linear modeling focuses on decoupling disease signatures from effects of aging. Our results elucidated mouse-to-human translatable signatures associated with disease: excitatory synapses, inflammatory cytokine signaling, and complement cascade- and TYROBP-based innate immune activity; these signatures all find validation in previous literature. Additionally, we identified agonists of the Tyro3 / Axl / MerTK (TAM) receptor family as significant contributors to the cross-species innate immune signature; the mechanistic roles of the TAM receptor family in AD merit further dedicated study. We have demonstrated that TransComp-R can enhance translational understanding of relationships between AD mouse model data and human data, thus aiding generation of biological hypotheses concerning AD progression and holding promise for improved preclinical evaluation of therapies.


2021 ◽  
Vol 80 (3) ◽  
pp. 1151-1168
Author(s):  
Barbara Hinteregger ◽  
Tina Loeffler ◽  
Stefanie Flunkert ◽  
Joerg Neddens ◽  
Thomas A. Bayer ◽  
...  

Background: Preclinical Alzheimer’s disease (AD) research strongly depends on transgenic mouse models that display major symptoms of the disease. Although several AD mouse models have been developed representing relevant pathologies, only a fraction of available mouse models, like the Tg4-42 mouse model, display hippocampal atrophy caused by the death of neurons as the key feature of AD. The Tg4-42 mouse model is therefore very valuable for use in preclinical research. Furthermore, metabolic biomarkers which have the potential to detect biochemical changes, are crucial to gain deeper insights into the pathways, the underlying pathological mechanisms and disease progression. Objective: We thus performed an in-depth characterization of Tg4-42 mice by using an integrated approach to analyze alterations of complex biological networks in this AD in vivo model. Methods: Therefore, untargeted NMR-based metabolomic phenotyping was combined with behavioral tests and immunohistological and biochemical analyses. Results: Our in vivo experiments demonstrate a loss of body weight increase in homozygous Tg4-42 mice over time as well as severe impaired learning behavior and memory deficits in the Morris water maze behavioral test. Furthermore, we found significantly altered metabolites in two different brain regions and metabolic changes of the glutamate/4-aminobutyrate-glutamine axis. Based on these results, downstream effects were analyzed showing increased Aβ42 levels, increased neuroinflammation as indicated by increased astro- and microgliosis as well as neuronal degeneration and neuronal loss in homozygous Tg4-42 mice. Conclusion: Our study provides a comprehensive characterization of the Tg4-42 mouse model which could lead to a deeper understanding of pathological features of AD. Additionally this study reveals changes in metabolic biomarker which set the base for future preclinical studies or drug development.


2018 ◽  
Vol 16 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J. Stenzel ◽  
C. Rühlmann ◽  
T. Lindner ◽  
S. Polei ◽  
S. Teipel ◽  
...  

Background: Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer’s disease (AD). In preclinical research, [<sup>18</sup>F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [<sup>18</sup>F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques. Methods: Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [<sup>18</sup>F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [<sup>18</sup>F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed. Results: Visual inspection and SUVs revealed an increased cerebral uptake of [<sup>18</sup>F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis. Conclusion: The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [<sup>18</sup>F]-florbetaben in the APPswe/PS1dE9 mouse model.


2021 ◽  
Vol 22 (23) ◽  
pp. 13168
Author(s):  
Natasha Elizabeth Mckean ◽  
Renee Robyn Handley ◽  
Russell Grant Snell

Alzheimer’s disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then ‘cured’ in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Benoît Delatour ◽  
Stéphane Epelbaum ◽  
Alexandra Petiet ◽  
Marc Dhenain

Identification of biomarkers of Alzheimer's Disease (AD) is a critical priority to efficiently diagnose the patients, to stage the progression of neurodegeneration in living subjects, and to assess the effects of disease-modifier treatments. This paper addresses the development and usefulness of preclinical neuroimaging biomarkers of AD. It is today possible to image in vivo the brain of small rodents at high resolution and to detect the occurrence of macroscopic/microscopic lesions in these species, as well as of functional alterations reminiscent of AD pathology. We will outline three different types of imaging biomarkers that can be used in AD mouse models: biomarkers with clear translational potential, biomarkers that can serve as in vivo readouts (in particular in the context of drug discovery) exclusively for preclinical research, and finally biomarkers that constitute new tools for fundamental research on AD physiopathogeny.


2019 ◽  
Author(s):  
Amanda K. Engstrom ◽  
Alicia C. Walker ◽  
Rohitha A. Moudgal ◽  
Dexter A. Myrick ◽  
Stephanie M. Kyle ◽  
...  

AbstractTauopathies are a class of neurodegenerative diseases associated with pathological tau. Despite many advances in our understanding of these diseases, the direct mechanism through which tau contributes to neurodegeneration remains poorly understood. Previously, our lab implicated the histone demethylase LSD1 in tau-induced neurodegeneration by showing that LSD1 localizes to pathological tau aggregates in Alzheimer’s disease cases, and that it is continuously required for the survival of hippocampal and cortical neurons in mice. Here, we utilize the P301S tauopathy mouse model to demonstrate that pathological tau can exclude LSD1 from the nucleus in neurons. In addition, we show that reducing LSD1 in these mice is sufficient to highly exacerbate tau-mediated neurodegeneration and tau-induced gene expression changes. Finally, we find that overexpressing LSD1 in the hippocampus of tauopathy mice, even after pathology has formed, is sufficient to significantly delay neurodegeneration and counteract tau-induced expression changes. These results suggest that inhibiting LSD1 via sequestration contributes to tau-mediated neurodegeneration. Thus, LSD1 is a promising therapeutic target for tauopathies such as Alzheimer’s disease.SIGNIFICANCE STATEMENTWe have made the novel discovery that pathological tau functions through the histone demethylase LSD1 in the Alzheimer’s disease pathway. Thus, we have identified a mechanism that links tau to the downstream neuronal dysfunction pathways. This step can potentially be targeted therapeutically, after the onset of dementia symptoms, to block the progression of dementia in Alzheimer’s disease patients.


2019 ◽  
Author(s):  
A. Shepherd ◽  
J.K.H. Lim ◽  
V.H.Y. Wong ◽  
A.M. Zeleznikow-Johnston ◽  
L. Churilov ◽  
...  

AbstractExecutive function deficits in Alzheimer’s disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APP/PS1 mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.


2021 ◽  
Author(s):  
Shivali Kohli ◽  
Lilya Andrianova ◽  
Gabriella Margetts-Smith ◽  
Erica Brady ◽  
Michael Thomas Craig

One of the main features of Alzheimer's disease is the progressive loss of memory, likely due to pathological changes within brain regions such as the hippocampus and entorhinal cortex. These structures are embedded within the Papez circuit, an interconnected set of brain regions that are essential for episodic memory. The anterior thalamic nuclei (ATN) and thalamic nucleus reuniens (NRe) are both extensively and reciprocally connected with these important memory regions, so we sought to test the hypothesis that chemogenetically-enhancing neurotransmission through NRe and ATN would ameliorate memory deficits in two mechanistically-distinct mouse models of Alzheimer's disease. Using the hAPP-J20 mouse model of amyloidopathy and the Tg4510 mouse model of tauopathy, we carried out stereotaxic injections of viral vectors to transduce hM3Dq (Gq)_mCherry into NRe or the anterio-dorsal/anterio-ventral nuclei of ATN, using mCherry as a control. At nine months (hAPP-J20) or six months (Tg4510) of age, mice underwent a behaviour battery of open field (OF), novel object recognition (NOR) and radial arm maze (RAM), with DREADD agonist 21 administered 30min prior to each behaviour test. Tissue was collected post-behaviour to confirm injection site and virus expression. Both Tg4510 and hAPP-J20 mice show marked hyperactivity in the OF, significant deficits in recognition memory, and a significant impairment in spatial reference and spatial working memory. Unexpectedly, chemogenetic activation of ATN or NRe did not significantly improve these memory impairments or reduce the observed hyperactivity. This may be due to compensation elsewhere within the memory circuit, or that the pathological changes are too far advanced for behaviour reversal.


Sign in / Sign up

Export Citation Format

Share Document