scholarly journals Solute carrier 5A5 regulates systemic glucose homeostasis by mediating glucose absorption in the Drosophila midgut

2021 ◽  
Author(s):  
Hui Ying Lim ◽  
Weidong Wang ◽  
Yue Li

The small intestine is the first organ that is exposed to and absorbs dietary glucose and thus represents the first of a continuum of events that modulates normal systemic glucose homeostasis. A better understanding of the regulation of intestinal glucose transporters is therefore pertinent to our efforts in curbing metabolic disorders. However, so far, the mechanisms known to regulate SGLT1, the primary intestinal glucose transporter, are mainly elucidated from in vitro studies. The Drosophila midgut, functional equivalence of the small intestine, could serve as an efficient in vivo model system for studying intestinal glucose transporter regulation; however, no glucose transporter has yet been identified in the midgut. Here, we report that the Drosophila Solute Carrier 5A5 (dSLC5A5) is homologous to SGLT1 and is highly expressed in the midgut. The knockdown of dSLC5A5 decreases systemic and circulating sugar levels and decreases glucose uptake into the enterocytes. In contrary, the overexpression of dSLC5A5 elevates systemic and circulating sugar levels and promotes glucose uptake into the enterocytes. We show that dSLC5A5 undergoes dynamin-dependent endocytosis in the enterocyte apical membrane, and that dSLC5A5 endocytosis is essential for the glucose uptake capability of dSLC5A5. Moreover, we provide evidence supporting that intracellular lysosomal degradation of endocytosed dSLC5A5 plays a significant role in the maintenance of dSLC5A5 level in the enterocyte apical membrane. We further show that short-term exposure to glucose upregulates SLC5A5 abundance in the enterocyte apical membrane. Finally, we show that the loss or gain of dSLC5A5 ameliorates or exacerbates the high sugar diet (HSD)-mediated glucose metabolic defects. Together, our studies uncovered the first Drosophila glucose transporter in the midgut and reveal new mechanisms that regulate glucose transporters in the enterocyte apical membranes.

2021 ◽  
Vol 22 (22) ◽  
pp. 12424
Author(s):  
Yue Li ◽  
Weidong Wang ◽  
Hui-Ying Lim

The small intestine is the initial site of glucose absorption and thus represents the first of a continuum of events that modulate normal systemic glucose homeostasis. A better understanding of the regulation of intestinal glucose transporters is therefore pertinent to our efforts in curbing metabolic disorders. Using molecular genetic approaches, we investigated the role of Drosophila Solute Carrier 5A5 (dSLC5A5) in regulating glucose homeostasis by mediating glucose uptake in the fly midgut. By genetically knocking down dSLC5A5 in flies, we found that systemic and circulating glucose and trehalose levels are significantly decreased, which correlates with an attenuation in glucose uptake in the enterocytes. Reciprocally, overexpression of dSLC5A5 significantly increases systemic and circulating glucose and trehalose levels and promotes glucose uptake in the enterocytes. We showed that dSLC5A5 undergoes apical endocytosis in a dynamin-dependent manner, which is essential for glucose uptake in the enterocytes. Furthermore, we showed that the dSLC5A5 level in the midgut is upregulated by glucose and that dSLC5A5 critically directs systemic glucose homeostasis on a high-sugar diet. Together, our studies have uncovered the first Drosophila glucose transporter in the midgut and revealed new mechanisms that regulate glucose transporter levels and activity in the enterocyte apical membrane.


2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


2000 ◽  
Vol 279 (6) ◽  
pp. E1358-E1365 ◽  
Author(s):  
Bo Yu ◽  
Adrienne Schroeder ◽  
Laura E. Nagy

Short-term exposure to ethanol impairs glucose homeostasis, but the effects of ethanol on individual components of the glucose disposal pathway are not known. To understand the mechanisms by which ethanol disrupts glucose homeostasis, we have investigated the direct effects of ethanol on glucose uptake and translocation of GLUT-4 in H9c2 myotubes. Short-term treatment with 12.5–50 mM ethanol increased uptake of 2-deoxyglucose by 1.8-fold in differentiated myotubes. Pretreatment of H9c2 myotubes with 100 nM wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had no effect on ethanol-induced increases in 2-deoxyglucose uptake. In contrast, preincubation with 25 μM dantrolene, an inhibitor of Ca2+release from the sarcoplasmic reticulum, blocked the stimulation of 2-deoxyglucose uptake by ethanol. Increased 2-deoxyglucose uptake after ethanol treatment was associated with a decrease in small intracellular GLUT-4 vesicles and an increase in GLUT-4 localized at the cell surface. In contrast, ethanol had no effect on the quantity of GLUT-1 and GLUT-3 at the plasma membrane. These data demonstrate that physiologically relevant concentrations of ethanol disrupt the trafficking of GLUT-4 in H9c2 myotubes resulting in translocation of GLUT-4 to the plasma membrane and increased glucose uptake.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1783-1794 ◽  
Author(s):  
Sybille D. Reichardt ◽  
Michael Föller ◽  
Rexhep Rexhepaj ◽  
Ganesh Pathare ◽  
Kerstin Minnich ◽  
...  

Glucocorticoid (GC) treatment of inflammatory disorders, such as inflammatory bowel disease, causes deranged metabolism, in part by enhanced intestinal resorption of glucose. However, the underlying molecular mechanism is poorly understood. Hence, we investigated transcriptional control of genes reported to be involved in glucose uptake in the small intestine after GC treatment and determined effects of GC on electrogenic glucose transport from transepithelial currents. GRvillinCre mice lacking the GC receptor (GR) in enterocytes served to identify the target cell of GC treatment and the requirement of the GR itself; GRdim mice impaired in dimerization and DNA binding of the GR were used to determine the underlying molecular mechanism. Our findings revealed that oral administration of dexamethasone to wild-type mice for 3 d increased mRNA expression of serum- and GC-inducible kinase 1, sodium-coupled glucose transporter 1, and Na+/H+ exchanger 3, as well as electrogenic glucose transport in the small intestine. In contrast, GRvillinCre mice did not respond to GC treatment, neither with regard to gene activation nor to glucose transport. GRdim mice were also refractory to GC, because dexamethasone treatment failed to increase both, gene expression and electrogenic glucose transport. In addition, the rise in blood glucose levels normally observed after GC administration was attenuated in both mutant mouse strains. We conclude that enhanced glucose transport in vivo primarily depends on gene regulation by the dimerized GR in enterocytes, and that this mechanism contributes to GC-induced hyperglycemia.


2012 ◽  
Vol 303 (5) ◽  
pp. F766-F774 ◽  
Author(s):  
Rekha Yesudas ◽  
Russell Snyder ◽  
Thomas Abbruscato ◽  
Thomas Thekkumkara

Previously, we have demonstrated human angiotensin type 1 receptor (hAT1R) promoter architecture with regard to the effect of high glucose (25 mM)-mediated transcriptional repression in human proximal tubule epithelial cells (hPTEC; Thomas BE, Thekkumkara TJ. Mol Biol Cell 15: 4347–4355, 2004). In the present study, we investigated the role of glucose transporters in high glucose-mediated hAT1R repression in primary hPTEC. Cells were exposed to normal glucose (5.5 mM) and high glucose (25 mM), followed by determination of hyperglycemia-mediated changes in receptor expression and glucose transporter activity. Exposure of cells to high glucose resulted in downregulation of ANG II binding (4,034 ± 163.3 to 1,360 ± 154.3 dpm/mg protein) and hAT1R mRNA expression (reduced 60.6 ± 4.643%) at 48 h. Under similar conditions, we observed a significant increase in glucose uptake (influx) in cells exposed to hyperglycemia. Our data indicated that the magnitude of glucose influx is concentration and time dependent. In euglycemic cells, inhibiting sodium-glucose cotransporters (SGLTs) with phlorizin and facilitative glucose transporters (GLUTs) with phloretin decreased glucose influx by 28.57 ± 0.9123 and 54.33 ± 1.202%, respectively. However, inhibiting SGLTs in cells under hyperglycemic conditions decreased glucose influx by 53.67 ± 2.906%, while GLUT-mediated glucose uptake remained unaltered (57.67 ± 3.180%). Furthermore, pretreating cells with an SGLT inhibitor reversed high glucose-mediated downregulation of the hAT1R, suggesting an involvement of SGLT in high glucose-mediated hAT1R repression. Our results suggest that in hPTEC, hyperglycemia-induced hAT1R downregulation is largely mediated through SGLT-dependent glucose influx. As ANG II is an important modulator of hPTEC transcellular sodium reabsorption and function, glucose-mediated changes in hAT1R gene expression may participate in the pathogenesis of diabetic renal disease.


1989 ◽  
Vol 9 (10) ◽  
pp. 4187-4195 ◽  
Author(s):  
J C Vera ◽  
O M Rosen

We report the functional expression of two different mammalian facilitative glucose transporters in Xenopus oocytes. The RNAs encoding the rat brain and liver glucose transporters were transcribed in vitro and microinjected into Xenopus oocytes. Microinjected cells showed a marked increase in 2-deoxy-D-glucose uptake as compared with controls injected with water. 2-Deoxy-D-glucose uptake increased during the 5 days after microinjection of the RNAs, and the microinjected RNAs were stable for at least 3 days. The expression of functional glucose transporters was dependent on the amount of RNA injected. The oocyte-expressed transporters could be immunoprecipitated with anti-brain and anti-liver glucose transporter-specific antibodies. Uninjected oocytes expressed an endogenous transporter that appeared to be stereospecific and inhibitable by cytochalasin B. This transporter was kinetically and immunologically distinguishable from both rat brain and liver glucose transporters. The uniqueness of this transporter was confirmed by Northern (RNA) blot analysis. The endogenous oocyte transporter was responsive to insulin and to insulinlike growth factor I. Most interestingly, both the rat brain and liver glucose transporters, which were not insulin sensitive in the tissues from which they were cloned, responded to insulin in the oocyte similarly to the endogenous oocyte transporter. These data suggest that the insulin responsiveness of a given glucose transporter depends on the type of cell in which the protein is expressed. The expression of hexose transporters in the microinjected oocytes may help to identify tissue-specific molecules involved in hormonal alterations in hexose transport activity.


2017 ◽  
Vol 313 (4) ◽  
pp. C421-C429 ◽  
Author(s):  
Abraham J. Al-Ahmad

Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells.


2007 ◽  
Vol 292 (6) ◽  
pp. E1922-E1928 ◽  
Author(s):  
Edward J. Miller ◽  
Ji Li ◽  
Kevin M. Sinusas ◽  
Geoffrey D. Holman ◽  
Lawrence H. Young

Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte cell surface membranes. Metabolic stress and insulin both increase glucose transport by stimulating the translocation of glucose transporters from intracellular storage vesicles to the cell surface. Isolated perfused transgenic mouse hearts are commonly used to investigate the molecular regulation of heart metabolism; however, current methods to quantify cell surface glucose transporter content in intact mouse hearts are limited. Therefore, we developed a novel technique to directly assess the cell surface content of the cardiomyocyte glucose transporter GLUT4 in perfused mouse hearts, using a cell surface impermeant biotinylated bis-glucose photolabeling reagent (bio-LC-ATB-BGPA). Bio-LC-ATB-BGPA was infused through the aorta and cross-linked to cell surface GLUTs. Bio-LC-ATB-BGPA-labeled GLUT4 was recovered from cardiac membranes by streptavidin isolation and quantified by immunoblotting. Bio-LC-ATB-BGPA-labeling of GLUT4 was saturable and competitively inhibited by d-glucose. Stimulation of glucose uptake by insulin in the perfused heart was associated with parallel increases in bio-LC-ATB-BGPA-labeling of cell surface GLUT4. Bio-LC-ATB-BGPA also labeled cell surface GLUT1 in the perfused heart. Thus, photolabeling provides a novel approach to assess cell surface glucose transporter content in the isolated perfused mouse heart and may prove useful to investigate the mechanisms through which insulin, ischemia, and other stimuli regulate glucose metabolism in the heart and other perfused organs.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ivika Jakson ◽  
Dorina Ujvari ◽  
Sebastian Brusell Gidlöf ◽  
Angelica Lindén Hirschberg

Abstract Background Solute carrier family 2 member 1 (SLC2A1; previously known as glucose transporter 1), is the most abundant glucose transporter in human endometrium and is up-regulated during decidualization, whereas high insulin may have a negative impact on this process. The present study aimed to investigate the effect of insulin on the expression of SLC2A1 and glucose uptake in decidualizing human endometrial stromal cells. Methods We induced in vitro decidualization of endometrial stromal cells obtained from regularly menstruating healthy non-obese women. The cells were treated with increasing concentrations of insulin, and the involvement of the transcription factor forkhead box O1 (FOXO1) was evaluated using a FOXO1 inhibitor. SLC2A1 mRNA levels were measured by Real-Time PCR and protein levels were evaluated by immunocytochemistry. Glucose uptake was estimated by an assay quantifying the cellular uptake of radioactive glucose. One-way ANOVA, Dunnett’s multiple comparisons test and paired t-test were used to determine the statistical significance of the results. Results We found that insulin dose-dependently decreased SLC2A1 mRNA levels and decreased protein levels of SLC2A1 in decidualizing human endometrial stromal cells. Transcriptional inactivation of FOXO1 seems to explain at least partly the down-regulation of SLC2A1 by insulin. Glucose uptake increased upon decidualization, whereas insulin treatment resulted in a slight inhibition of the glucose uptake, although not significant for all insulin concentrations. Conclusions These results indicate an impairment of decidualization by high concentrations of insulin. Future studies will determine the clinical significance of our results for endometrial function and decidualization in women with insulin resistance and hyperinsulinemia.


Sign in / Sign up

Export Citation Format

Share Document