scholarly journals Mass mask-wearing notably reduces COVID-19 transmission

Author(s):  
Gavin Leech ◽  
Charlie Rogers-Smith ◽  
Jonas Benjamin Sandbrink ◽  
Benedict Snodin ◽  
Robert Zinkov ◽  
...  

Mask-wearing has been a controversial measure to control the COVID-19 pandemic. While masks are known to substantially reduce disease transmission in healthcare settings (Howard et al 2021), studies in community settings report inconsistent results (Brainard et al 2020). Investigating the inconsistency within epidemiological studies, we find that a commonly used proxy, government mask mandates, does not correlate with large increases in mask-wearing in our window of analysis. We thus analyse the effect of mask-wearing on transmission instead, drawing on several datasets covering 92 regions on 6 continents, including the largest survey of individual-level wearing behaviour (n=20 million) (Kreuter et al 2020). Using a hierarchical Bayesian model, we estimate the effect of both mask-wearing and mask-mandates on transmission by linking wearing levels (or mandates) to reported cases in each region, adjusting for mobility and non-pharmaceutical interventions. We assess the robustness of our results in 123 experiments across 22 sensitivity analyses. Across these analyses, we find that an entire population wearing masks in public leads to a median reduction in the reproduction number R of 25.8%, with 95% of the medians between 22.2% and 30.9%. In our window of analysis, the median reduction in $R$ associated with the wearing level observed in each region was 20.4% [2.0%, 23.3%]. We do not find evidence that mandating mask-wearing reduces transmission. Our results suggest that mask-wearing is strongly affected by factors other than mandates. We establish the effectiveness of mass mask-wearing, and highlight that wearing data, not mandate data, are necessary to infer this effect.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


2021 ◽  
Vol 18 (178) ◽  
Author(s):  
Marco Tulio Angulo ◽  
Fernando Castaños ◽  
Rodrigo Moreno-Morton ◽  
Jorge X. Velasco-Hernández ◽  
Jaime A. Moreno

For mitigating the COVID-19 pandemic, much emphasis is made on implementing non-pharmaceutical interventions to keep the reproduction number below one. However, using that objective ignores that some of these interventions, like bans of public events or lockdowns, must be transitory and as short as possible because of their significant economic and societal costs. Here, we derive a simple and mathematically rigorous criterion for designing optimal transitory non-pharmaceutical interventions for mitigating epidemic outbreaks. We find that reducing the reproduction number below one is sufficient but not necessary. Instead, our criterion prescribes the required reduction in the reproduction number according to the desired maximum of disease prevalence and the maximum decrease of disease transmission that the interventions can achieve. We study the implications of our theoretical results for designing non-pharmaceutical interventions in 16 cities and regions during the COVID-19 pandemic. In particular, we estimate the minimal reduction of each region’s contact rate necessary to control the epidemic optimally. Our results contribute to establishing a rigorous methodology to design optimal non-pharmaceutical intervention policies for mitigating epidemic outbreaks.


Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Background: Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods: We fit a metapopulation Susceptible-Exposed-Infectious-Recovered (SEIR) model to reported cases stratified by two groups to estimate the impact of a lockdown on the effective reproduction number (Re). We estimated the basic reproduction number (R0) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the lockdown. We estimated R­e values of both groups before and after the lockdown, simulated the effect of these values on epidemic curves and explored a range of cross-transmission scenarios. Results: We estimate R0 at 1·06 (95% CI: 1·05-1·28) for P1 and 1·83 (1·58-2·33) for P2. On March 22nd, Re for P1 and P2 are estimated at 1·13 (1·07-1·17) and 1·38 (1·25-1·63) respectively. After the curfew had taken effect, Re for P1 dropped modestly to 1·04 (1·02-1·06) but almost doubled for P2 to 2·47 (1·98-3·45). Our simulated epidemic trajectories show that the partial curfew measure modestly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission from P2 to P1 elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2.    Conclusion: Our results demonstrate that a lockdown can reduce SARS-CoV2 transmission in one subpopulation but accelerate it in another. At the population level, the consequences of lockdowns may vary across the socioeconomic spectrum. Any public health intervention needs to be sensitive to disparities within populations.


2020 ◽  
Author(s):  
Marco Tulio Angulo ◽  
Fernando Castaños ◽  
Rodrigo Moreno-Morton ◽  
Jorge X. Velasco-Hernández ◽  
Jaime A. Moreno

AbstractFor mitigating the COVID-19 pandemic, much emphasis is made on implementing non-pharmaceutical interventions to keep the reproduction number below one. However, using that objective ignores that some of these interventions, like bans of public events or lockdowns, must be transitory and as short as possible because of their significative economic and societal costs. Here we derive a simple and mathematically rigorous criterion for designing optimal transitory non-pharmaceutical interventions for mitigating epidemic outbreaks. We find that reducing the reproduction number below one is sufficient but not necessary. Instead, our criterion prescribes the required reduction in the reproduction number according to the desired maximum of disease prevalence and the maximum decrease of disease transmission that the interventions can achieve. We study the implications of our theoretical results for designing non-pharmaceutical interventions in 16 cities and regions during the COVID-19 pandemic. In particular, we estimate the minimal reduction of each region’s contact rate necessary to control the epidemic optimally. Our results contribute to establishing a rigorous methodology to guide the design of optimal non-pharmaceutical intervention policies.


2021 ◽  
Author(s):  
MUSA RABIU ◽  
Sarafa A. Iyaniwura

Abstract We developed an endemic model of COVID-19 to assess the impact of vaccination and immunity waning on the dynamics of the disease. Our model exhibits the phenomenon of backward bifurcation and bi-stability, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium. The epidemiological implication of this is that the control reproduction number being less than unity is no longer sufficient to guarantee disease eradication. We showed that this phenomenon could be eliminated by either increasing the vaccine efficacy or by reducing the disease transmission rate (adhering to non-pharmaceutical interventions). Furthermore, we numerically investigated the impacts of vaccination and waning of both vaccine-induced immunity and post-recovery immunity on the disease dynamics. Our simulation results show that the waning of vaccine-induced immunity has more effect on the disease dynamics relative to post-recovery immunity waning, and suggests that more emphasis should be on reducing the waning of vaccine-induced immunity to eradicate COVID-19.


2020 ◽  
Author(s):  
Sang Woo Park ◽  
Kaiyuan Sun ◽  
David Champredon ◽  
Michael Li ◽  
Benjamin M. Bolker ◽  
...  

AbstractGeneration intervals and serial intervals are critical quantities for characterizing outbreak dynamics. Generation intervals characterize the time between infection and transmission, while serial intervals characterize the time between the onset of symptoms in a chain of transmission. They are often used interchangeably, leading to misunderstanding of how these intervals link the epidemic growth rate r and the reproduction number ℛ. Generation intervals provide a mechanistic link between r and ℛ but are harder to measure via contact tracing. While serial intervals are easier to measure from contact tracing, recent studies suggest that the two intervals give different estimates of ℛ from r. We present a general framework for characterizing epidemiological delays based on cohorts (i.e., a group of individuals that share the same event time, such as symptom onset) and show that forward-looking serial intervals, which correctly link ℛ with r, are not the same as “intrinsic” serial intervals, but instead change with r. We provide a heuristic method for addressing potential biases that can arise from not accounting for changes in serial intervals across cohorts and apply the method to estimating ℛ for the COVID-19 outbreak in China using serial-interval data — our analysis shows that using incorrectly defined serial intervals can severely bias estimates. This study demonstrates the importance of early epidemiological investigation through contact tracing and provides a rationale for reassessing generation intervals, serial intervals, and ℛ estimates, for COVID-19.Significance StatementThe generation- and serial-interval distributions are key, but different, quantities in outbreak analyses. Recent theoretical studies suggest that two distributions give different estimates of the reproduction number ℛ from the exponential growth rate r; however, both intervals, by definition, describe disease transmission at the individual level. Here, we show that the serial-interval distribution, defined from the correct reference time and cohort, gives the same estimate of ℛ as the generation-interval distribution. We then apply our framework to serial-interval data from the COVID-19 outbreak in China. While our study supports the use of serial-interval distributions in estimating ℛ, it also reveals necessary changes to the current understanding and applications of serial-interval distribution.


2021 ◽  
Author(s):  
Wandera Ogana ◽  
Victor Ogesa Juma ◽  
Wallace D. Bulimo

The first case of COVID-19 was reported in Kenya in March 2020 and soon after non-pharmaceutical interventions (NPIs) were established to control the spread of the disease. The NPIs consisted, and continue to consist, of mitigation measures followed by a period of relaxation of some of the measures. In this paper, we use a deterministic mathematical model to analyze the dynamics of the disease, during the first wave, and relate it to the intervention measures. In the process, we develop a new method for estimating the disease parameters. Our solutions yield a basic reproduction number, R0 = 2.76, which is consistent with other solutions. The results further show that the initial mitigation reduced disease transmission by 40% while the subsequent relaxation increased transmission by 25%. We also propose a mathematical model on how interventions of known magnitudes collectively affect disease transmission rates. The modelled positivity rate curve compares well with observations. If interventions of unknown magnitudes have occurred, and data is available on the positivity rate, we use the method of planar envelopes around a curve to deduce the modelled positivity rate and the magnitudes of the interventions. Our solutions deduce mitigation and relaxation effects of 42.5% and 26%, respectively; these percentages are close to values obtained by the solution of the SIRD system. Our methods so far apply to a single wave; there is a need to investigate the possibility of extending them to handle multiple waves.


Author(s):  
Joseph. C. Lemaitre ◽  
Javier Perez-Saez ◽  
Andrew S. Azman ◽  
Andrea Rinaldo ◽  
Jacques Fellay

AbstractFollowing the rapid dissemination of COVID-19 cases in Switzerland, large-scale non-pharmaceutical interventions (NPIs) were implemented by the cantons and the federal government between February 28 and March 20. Estimates of the impact of these interventions on SARS-CoV-2 transmission are critical for decision making in this and future outbreaks. We here aim to assess the impact of these NPIs on disease transmission by estimating changes in the basic reproduction number (R0) at national and cantonal levels in relation to the timing of these NPIs. We estimate the time-varying R0 nationally and in twelve cantons by fitting a stochastic transmission model explicitly simulating within hospital dynamics. We use individual-level data of >1,000 hospitalized patients in Switzerland and public daily reports of hospitalizations and deaths. We estimate the national R0 was 3.15 (95% CI: 2.13-3.76) at the start of the epidemic. Starting from around March 6, we find a strong reduction in R0 with a 85% median decrease (95% quantile range, QR: 83%-90%) to a value of 0.44 (95% QR: 0.27-0.65) in the period of March 29-April 5. At the cantonal-level R0 decreased over the course of the epidemic between 71% and 94%. We found that reductions in R0 were synchronous with changes in mobility patterns as estimated through smartphone activity, which started before the official implementation of NPIs. We found that most of the reduction of transmission is due to behavioural changes as opposed to natural immunity, the latter accounting for only about 3% of the total reduction in effective transmission. As Switzerland considers relaxing some of the restrictions of social mixing, current estimates of R0 well below one are promising. However most of inferred transmission reduction was due to behaviour change (<3% due to natural immunity buildup), with an estimated 97% (95% QR: 96.6%-97.2%) of the Swiss population still susceptible to SARS-CoV-2 as of April 24. These results warrant a cautious relaxation of social distance practices and close monitoring of changes in both the basic and effective reproduction numbers.


Author(s):  
Juan Yang ◽  
Valentina Marziano ◽  
Xiaowei Deng ◽  
Giorgio Guzzetta ◽  
Juanjuan Zhang ◽  
...  

AbstractCOVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Costas A. Christophi ◽  
Mercedes Sotos-Prieto ◽  
Fan-Yun Lan ◽  
Mario Delgado-Velandia ◽  
Vasilis Efthymiou ◽  
...  

AbstractEpidemiological studies have yielded conflicting results regarding climate and incident SARS-CoV-2 infection, and seasonality of infection rates is debated. Moreover, few studies have focused on COVD-19 deaths. We studied the association of average ambient temperature with subsequent COVID-19 mortality in the OECD countries and the individual United States (US), while accounting for other important meteorological and non-meteorological co-variates. The exposure of interest was average temperature and other weather conditions, measured at 25 days prior and 25 days after the first reported COVID-19 death was collected in the OECD countries and US states. The outcome of interest was cumulative COVID-19 mortality, assessed for each region at 25, 30, 35, and 40 days after the first reported death. Analyses were performed with negative binomial regression and adjusted for other weather conditions, particulate matter, sociodemographic factors, smoking, obesity, ICU beds, and social distancing. A 1 °C increase in ambient temperature was associated with 6% lower COVID-19 mortality at 30 days following the first reported death (multivariate-adjusted mortality rate ratio: 0.94, 95% CI 0.90, 0.99, p = 0.016). The results were robust for COVID-19 mortality at 25, 35 and 40 days after the first death, as well as other sensitivity analyses. The results provide consistent evidence across various models of an inverse association between higher average temperatures and subsequent COVID-19 mortality rates after accounting for other meteorological variables and predictors of SARS-CoV-2 infection or death. This suggests potentially decreased viral transmission in warmer regions and during the summer season.


Sign in / Sign up

Export Citation Format

Share Document