scholarly journals Differences in IgG antibody responses following BNT162b2 and mRNA-1273 Vaccines

2021 ◽  
Author(s):  
Jose Gilberto Montoya ◽  
Amy E Adams ◽  
Valerie Bonetti ◽  
Sien Deng ◽  
Nan A Link ◽  
...  

Studies examining antibody responses by vaccine brand are lacking and may be informative for optimizing vaccine selection, dosage, and regimens. The purpose of this study is to assess IgG antibody responses following immunization with BNT162b2 (30 μg S protein) and mRNA-1273 (100 μg S protein) vaccines. A cohort of clinicians at a non-for-profit organization is being assessed clinically and serologically following immunization with BNT162b2 or mRNA-1273. IgG responses were measured at the Remington Laboratory by an IgG against the SARS-CoV-2 spike protein-receptor binding domain. Mixed-effect linear (MEL) regression modeling was used to examine whether the SARS-CoV-2 IgG level differed by vaccine brand, dosage, or days since vaccination. Among 532 SARS-CoV-2 seronegative participants, 530 (99.6%) seroconverted with either vaccine. After adjustments for age and gender MEL regression modeling revealed that the average IgG increased after the second dose compared to the first dose (p<0.001). Overall, titers peaked at week six for both vaccines. Titers were significantly higher for mRNA-1273 vaccine on days 14-20 (p < 0.05), 42-48 (p < 0.01), 70-76 (p < 0.05), 77-83 (p < 0.05), and higher for BNT162b2 vaccine on days 28-34 (p < 0.001). In two participants taking immunosuppressive drugs SARS-CoV-2 IgG remained negative. The mRNA-1273 vaccine elicited both earlier antibody responses than BNT162b2 and higher antibody levels, possibly due to the higher S-protein delivery. Prospective clinical and serological follow-up of defined cohorts such as this may prove useful in determining antibody protection and whether differences in antibody kinetics between the vaccines have clinical significance.

Author(s):  
Craig Fenwick ◽  
Antony Croxatto ◽  
Alix T. Coste ◽  
Florence Pojer ◽  
Cyril Andre ◽  
...  

We have determined SARS-CoV-2-specific antibody responses in a cohort of 96 individuals with acute infection and in 578 individuals enrolled in a seroprevalence population study in Switzerland including three groups, i.e. subjects with previous RT-PCR confirmed SARS-CoV-2 infections (n=90), positive patient contacts (n=177) and random selected subjects (n=311). SARS-CoV-2 antibody responses specific to the Spike (S), in the monomeric and native trimeric forms, and/or the nucleocapsid (N) proteins were equally sensitive in the acute infection phase. Interestingly, as compared to anti-S antibody responses, those against the N protein appear to wane in the post-infection and substantially underestimated the proportion of SARS-CoV-2 infections in the groups of patient positive contacts, i.e. 10.9 to 32.2% reduction and in the random selected general population, i.e. up to 45% reduction. The overall reduction in seroprevalence targeting only anti-N IgG antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was more sensitive as compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.


2021 ◽  
Vol 10 (24) ◽  
pp. 5830
Author(s):  
Maria Elena Pugliese ◽  
Riccardo Battaglia ◽  
Antonio Cerasa ◽  
Maria Girolama Raso ◽  
Francesco Coschignano ◽  
...  

Objective: In the last year, a large amount of research has investigated the anti-spike protein receptor-binding domain (S-RBD) antibody responses in patients at high risk of developing severe acute respiratory syndrome because of COVID-19 infection. However, no data are available on the chronic disorder of consciousness (DOC). Methods: Here, we evaluated anti-S-RBD IgG levels after vaccination in chronic DOC patients compared with demographically matched healthy controls (HC) by indirect chemiluminescence immunoassay. All individuals completed a two-dose-cycle vaccination with Pfizer mRNA vaccine (BNT162b2), and antibody responses were evaluated at 30 and 180 days after the administration of the second dose of vaccination. Results: We compared 32 DOC patients with 34 demographically matched healthy controls. Both DOC and HC groups showed a similar antibody response at 30 days, whereas at follow-up (180 days) DOC patients were characterized by lower S-RBD IgG levels with respect to controls. Additional multiple regression analyses including demographical and clinical comorbidities as predictors revealed that age was the only factor associated with the decrease in S-RBD IgG levels at follow-up (180 days). Elderly individuals of both groups were characterized by a reduction in the antibody responses with respect to younger individuals. Conclusions: Our results show an efficacy seroconversion in DOC patients in the first period after vaccination, which significantly declines over time with respect to healthy controls.


Allergy ◽  
1989 ◽  
Vol 44 (6) ◽  
pp. 380-384 ◽  
Author(s):  
S. L. NORDVALL ◽  
B. RENCK ◽  
R. EINARSSON

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149581 ◽  
Author(s):  
Gustavo C. Cassiano ◽  
Adriana A. C. Furini ◽  
Marcela P. Capobianco ◽  
Luciane M. Storti-Melo ◽  
Maristela G. Cunha ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 964
Author(s):  
Kelsey A. Pilewski ◽  
Kevin J. Kramer ◽  
Ivelin S. Georgiev

Vaccination remains one of the most successful medical interventions in history, significantly decreasing morbidity and mortality associated with, or even eradicating, numerous infectious diseases. Although traditional immunization strategies have recently proven insufficient in the face of many highly mutable and emerging pathogens, modern strategies aim to rationally engineer a single antigen or cocktail of antigens to generate a focused, protective immune response. However, the effect of cocktail vaccination (simultaneous immunization with multiple immunogens) on the antibody response to each individual antigen within the combination, remains largely unstudied. To investigate whether immunization with a cocktail of diverse antigens would result in decreased antibody titer against each unique antigen in the cocktail compared to immunization with each antigen alone, we immunized mice with surface proteins from uropathogenic Escherichia coli, Mycobacterium tuberculosis, and Neisseria meningitides, and monitored the development of antigen-specific IgG antibody responses. We found that antigen-specific endpoint antibody titers were comparable across immunization groups by study conclusion (day 70). Further, we discovered that although cocktail-immunized mice initially elicited more robust antibody responses, the rate of titer development decreases significantly over time compared to single antigen-immunized mice. Investigating the basic properties that govern the development of antigen-specific antibody responses will help inform the design of future combination immunization regimens.


2021 ◽  
Author(s):  
Jiri Zahradnik ◽  
Jaroslav Nunvar ◽  
Gideon Schreiber

Much can be learned from 1.2 million sequences of SARS-CoV-2 generated during the last 15 months. Out of the overwhelming number of mutations sampled so far, only few rose to prominence in the viral population. Many of these emerged recently and independently in multiple lineages. Such a textbook example of convergent evolution at the molecular level is not only curiosity but a guide to uncover the basis for adaptive advantage behind these events. Focusing on the extent of the convergent evolution in the spike (S) protein, our report confirms that the most concerning SARS-CoV-2 lineages carry the heaviest burden of convergent S-protein mutations, suggesting their fundamental adaptive advantage. The great majority (21/25) of S-protein sites under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. We further show that among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favored. While the probed mutation space in the S protein covered all amino-acids reachable by single nucleotide changes, substitutions requiring two nucleotide changes or epistatic mutations of multiple-residues have only recently started to emerge. Unfortunately, despite their convergent emergence and physical association, most of these adaptive mutations and their combinations remain understudied. We aim to promote research of current variants which are currently understudied but may become important in the future.


Author(s):  
Huihui Mou ◽  
Brian D. Quinlan ◽  
Haiyong Peng ◽  
Yan Guo ◽  
Shoujiao Peng ◽  
...  

SUMMARYThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related SARS-CoV-2, has been isolated from one horseshoe-bat species. Here we characterize the ability of S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, and RaTG13 to bind a range of ACE2 orthologs. We observed that the SARS-CoV-2 RBD bound human, pangolin, and horseshoe bat (R. macrotis) ACE2 more efficiently than the SARS-CoV-1 or RaTG13 RBD. Only the RaTG13 RBD bound rodent ACE2 orthologs efficiently. Five mutations drawn from ACE2 orthologs of nine Rhinolophus species enhanced human ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 by an immunoadhesin form of human ACE2 (ACE2-Fc). Two of these mutations impaired neutralization of SARS-CoV-1. An ACE2-Fc variant bearing all five mutations neutralized SARS-CoV-2 five-fold more efficiently than human ACE2-Fc. These data narrow the potential SARS-CoV-2 reservoir, suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of ACE2-Fc.


Sign in / Sign up

Export Citation Format

Share Document