scholarly journals Determination of the Optical Properties of Thylakoid Membranes from Whole Leaf Reflectance Measurements Using a Capacitor and Unbound Electron Model

2021 ◽  
Author(s):  
Ranjan S Muttiah

This paper demonstrates that a capacitor equivalent along with unbound electrons can be used to model thylakoid membranes in grana stacks. From whole leaf reflectance measurements at normal incidences at 660nm wavelength and taken from the literature, refractive indices are obtained from the Fresnel equation for transverse electric (TE) and transverse magnetic (TM) polarization. The TE and TM polarizations for external reflectance depict the Brewster angle at which the magnitude of the reflected electric vector is zero; the internal reflections show that there is a narrow angle window of about 10 degrees before the internally refracted light goes into critical angle. The clustering and separation of reflection measurements with angle of incidence is explained using Fresnel equation; the cross-over angle is located beyond the Brewster angle for internal reflection. The predicted relaxation times from a capacitor and unbound electron model gave favorable comparisons against commonly reported fluorescence times in the 0.1 to 1 ns range (our results gave 0.5-0.8 ns). The di-electric constant for the membrane is estimated to be 5. The stacking number (number of grana layers) is consistent with the light penetration depth (skin depth). The magnetic permeability was shown to be close to that of vacuum and therefore the thylakoid lacks any magnetic properties as would be expected for such a transparent media. An in-vivo estimate based on thermal equilibrium of molecules for the permanent dipole moment of the chlorophyll molecule gave 2,025D (Debye).

Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Robert J. Witte ◽  
Norbert G. Campeau ◽  
Kiaran P. McGee ◽  
...  

Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


2006 ◽  
Vol 1 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Simone Graeff ◽  
Johanna Link ◽  
Wilhelm Claupein

AbstractThe ability to identify diseases in an early infection stage and to accurately quantify the severity of infection is crucial in plant disease assessment and management. A greenhouse study was conducted to assess changes in leaf spectral reflectance of wheat plants during infection by powdery mildew and take-all disease to evaluate leaf reflectance measurements as a tool to identify and quantify disease severity and to discriminate between different diseases. Wheat plants were inoculated under controlled conditions in different intensities either with powdery mildew or take-all. Leaf reflectance was measured with a digital imager (Leica S1 Pro, Leica, Germany) under controlled light conditions in various wavelength ranges covering the visible and the near-infrared spectra (380–1300 nm). Leaf scans were evaluated by means of L*a*b*-color system. Visual estimates of disease severity were made for each of the epidemics daily from the onset of visible symptoms to maximum disease severity. Reflectance within the ranges of 490780 nm (r2 = 0.69), 510780nm (r2 = 0.74), 5161300nm (r2 = 0.62) and 5401300 nm (r2 = 0.60) exhibited the strongest relationship with infection levels of both powdery mildew and take-all disease. Among the evaluated spectra the range of 490780nm showed most sensitive response to damage caused by powdery mildew and take-all infestation. The results of this study indicated that disease detection and discrimination by means of reflectance measurements may be realized by the use of specific wavelength ranges. Further studies have to be carried out, to discriminate powdery mildew and take-all infection from other plant stress factors in order to develop suitable decision support systems for site-specific fungicide application.


2018 ◽  
pp. 187-193 ◽  
Author(s):  
Dirk K. Hincha ◽  
Irina Bakaltcheva ◽  
Ulrich Heber ◽  
Jürgen M. Schmitt

2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Rami Tadros ◽  
Bhakti Rawal ◽  
Karen Briley-Saebo ◽  
David O’Connor ◽  
Dan Han ◽  
...  

Introduction: Mesenchymal stem cells (MSC) are being investigated in porcine abdominal aortic aneurysm (PAAA) models for their repair potential. This study uses MSCs labeled with the MRI contrast agent Ferex to non-invasively evaluate MSC migration in-vivo. Methods: MSCs from 6 pigs were isolated from bone marrow via Ficoll Paque separation and expanded in culture. Using a Lentiviral vector, MSC from all 6 pigs were transfected with green florescent protein (GFP). MSCs from 4 of these pigs were also labeled with 200μg/ml Ferex using Poly-L-Lysine and then analyzed for Ferex uptake and viability. Preservation of the MSC phenotype was confirmed using flow cytometry by detecting positive CD90 and negative CD45 and CD117. Transmission electron microscopy established that Ferex localized to lysosomes. MSCs were then injected into the adventitia of the PAAA. In-vivo MRI was performed using multiple echo gradient echo sequences. Effective transverse relaxation times (T2* values) were calculated on a pixel-by-pixel basis as a function of time post cell transplantation. Results: Ferex labeled MSCs were visible post transplantation at 4, 11, 15 and 21 days using MRI. The MRI signal void (decreased T2* values) correlated with the presence of Ferex within the PAAA. This signal loss progressively expanded circumferentially at each study interval representing cellular movement. MSC migration and localization were confirmed with GFP visualization on fluorescence microscopy and immunohistochemistry. In-vivo MRI signals also correlate with iron deposition on Perl’s stain. Conclusion: Ferex can be used as an in-vivo tracking agent of MSCs in PAAA models.


Internal images of structured objects may be obtained with n.m.r. by labelling component parts with different magnetic field strengths and therefore recognizably different n.m.r. frequencies. A linear field gradient generates a one-dimensional projection of nuclear density and a variety of techniques are employed to manipulate this one-dimensional probe to yield internal images in two and three dimensions. In the past few years, n.m.r. imaging, sometimes also called zeugmatography or spin mapping, has been applied progressively to provide proton images of small phantoms, fruit, vegetables and small animals, and finally to in vivo imaging of the human body; it promises to provide a valuable means of interior investigation of intact biological systems generally. For medical imaging the method is non-invasive, does not use ionizing radiations, appears to be without hazard and penetrates bony cavities without attenuation. Furthermore, other n.m.r. parameters, for example, relaxation times and fluid flow, may also be mapped; there is evidence that the relaxation times from tumours are significantly longer than those from corresponding normal tissue. Effort to date has mostly been concentrated on proton n.m.r., but some work has been done with other nuclei. Three examples are shown of n.m.r. images of intact biological systems: a fruit, an animal and a human system. The discussion includes the quantitative nature of the images, tissue discrimination, the relation between resolution in the image and image acquisition time, attenuation and phase shift of the r.f. field in the biological tissue, and magnets suitable for n.m.r. imaging. In principle, all conventional n.m.r. techniques can be combined with n.m.r. imaging methods in order to investigate heterogeneous systems. Overhauser imaging is briefly discussed.


2013 ◽  
Vol 21 ◽  
pp. S213
Author(s):  
K. Subburaj ◽  
R.B. Souza ◽  
B.T. Wyman ◽  
X. Li ◽  
T.M. Link ◽  
...  

1995 ◽  
Vol 13 (5) ◽  
pp. 693-700 ◽  
Author(s):  
Ingvil Jakobsen ◽  
Heidi Lyng ◽  
Olav Kaalhus ◽  
Einar K. Rofstad

2019 ◽  
Vol 116 (43) ◽  
pp. 21900-21906 ◽  
Author(s):  
Stefania Viola ◽  
Benjamin Bailleul ◽  
Jianfeng Yu ◽  
Peter Nixon ◽  
Julien Sellés ◽  
...  

In plants, algae, and some photosynthetic bacteria, the ElectroChromic Shift (ECS) of photosynthetic pigments, which senses the electric field across photosynthetic membranes, is widely used to quantify the activity of the photosynthetic chain. In cyanobacteria, ECS signals have never been used for physiological studies, although they can provide a unique tool to study the architecture and function of the respiratory and photosynthetic electron transfer chains, entangled in the thylakoid membranes. Here, we identified bona fide ECS signals, likely corresponding to carotenoid band shifts, in the model cyanobacteria Synechococcus elongatus PCC7942 and Synechocystis sp. PCC6803. These band shifts, most likely originating from pigments located in photosystem I, have highly similar spectra in the 2 species and can be best measured as the difference between the absorption changes at 500 to 505 nm and the ones at 480 to 485 nm. These signals respond linearly to the electric field and display the basic kinetic features of ECS as characterized in other organisms. We demonstrate that these probes are an ideal tool to study photosynthetic physiology in vivo, e.g., the fraction of PSI centers that are prebound by plastocyanin/cytochrome c6 in darkness (about 60% in both cyanobacteria, in our experiments), the conductivity of the thylakoid membrane (largely reflecting the activity of the ATP synthase), or the steady-state rates of the photosynthetic electron transport pathways.


1986 ◽  
Vol 64 (5) ◽  
pp. 795-802 ◽  
Author(s):  
Joshua B. Bederson ◽  
Henry M. Bartkowski ◽  
Kirkland Moon ◽  
Meredith Halks-Miller ◽  
Merry C. Nishimura ◽  
...  

✓ Many aspects of the use of high-resolution nuclear magnetic resonance (NMR) imaging in the examination of brain edema have not been fully explored. These include the quantitation of edema fluid, the ability to distinguish between various types of edema, and the extent to which tissue changes other than a change in water content can affect NMR relaxation times. The authors have compared NMR relaxation times obtained by both in vivo magnetic resonance imaging (MRI) and in vitro NMR spectroscopy of brain-tissue samples from young adult rats with cold lesions, fluid-percussion injury, hypoxic-ischemic injury, bacterial cerebritis, and cerebral tumor. Changes in relaxation times were compared with changes in brain water content, cerebral blood volume, and the results of histological examination. In general, both in vivo and in vitro longitudinal relaxation times (T1) and transverse relaxation times (T2) were prolonged in the injured hemispheres of all experimental groups. Water content of tissue from the injured hemispheres was increased in all groups. A linear correlation between T2 (but not T1) and water content was found. Changes in the values of T1 and T2 could be used to distinguish tumor from cold-injured tissue. Cerebral blood volume was reduced in the injured hemispheres and correlated inversely with prolongation of T1 and T2. The results of this study suggest that, in a clinical setting, prolongation of T2 is a better indicator of increased water content than prolongation of T1, yet quantitation of cerebral edema based solely upon prolongation of in vivo or in vitro T1 and T2 should be undertaken with caution.


2013 ◽  
Vol 18 (1) ◽  
pp. 217-234 ◽  
Author(s):  
K. Sharma

The present investigation is concerned with the effect of two temperatures on reflection coefficients in a micropolar thermoelastic solid half space. With two relaxation times, reflection of plane waves impinging obliquely at a plane interface of the micropolar generalized thermoelastic solid half space with two temperatures is investigated. The incident wave is assumed to be striking at the plane surface after propagating through the micropolar generalized thermoelastic solid with two temperatures. Amplitude ratios of the various reflected waves are obtained in closed form and it is found that these are functions of angle of incidence, frequency and are affected by the elastic properties of the media. The effect of two temperatures is shown on these amplitude ratios for a specific model.


Sign in / Sign up

Export Citation Format

Share Document