scholarly journals Reduced Lytic Activity of Bacteriophages in Presence of Antibiotics Targeting Bacterial Protein Synthesis

2021 ◽  
Author(s):  
Medhavi Vashisth ◽  
Shikha Yashveer ◽  
Nitin Virmani ◽  
Bidhan Chandra Bera ◽  
Rajesh Kumar Vaid ◽  
...  

Combination therapy of bacteriophage and antibiotics offers promise to treat multiple drug resistant bacterial infections through phage antibiotic synergy. However, its usage requires careful assessment as most antibiotics with mechanisms dependent upon inhibiting cell growth through interfering bacterial protein synthesis machinery were found to have an antagonistic effect on phage activity.

Nanoscale ◽  
2022 ◽  
Author(s):  
Deepa Ghosh ◽  
Swati Kaushik ◽  
Jijo Thomas ◽  
Vineeta Panwar ◽  
Preethi Murugesan ◽  
...  

The extensive and indiscriminate use of antibiotics in the ongoing COVID-19 pandemic might significantly contribute to the growing number of multiple drug resistant (MDR) bacteria. With the dwindling pipeline of...


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Junaid Iqbal ◽  
Ruqaiyyah Siddiqui ◽  
Shahana Urooj Kazmi ◽  
Naveed Ahmed Khan

Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract ofJuglans regiatree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract ofJ. regiabark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria,Salmonella typhior enteropathogenicE. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action ofJ. regiaextract against multiple drug-resistant bacteria when tested with a range of antibiotics.


Biochemistry ◽  
2008 ◽  
Vol 47 (34) ◽  
pp. 8828-8839 ◽  
Author(s):  
Christian M. Bruell ◽  
Carolin Eichholz ◽  
Andriy Kubarenko ◽  
Virginia Post ◽  
Vladimir I. Katunin ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2468 ◽  
Author(s):  
Sibhghatulla Shaikh ◽  
Nazia Nazam ◽  
Syed Mohd Danish Rizvi ◽  
Khurshid Ahmad ◽  
Mohammad Hassan Baig ◽  
...  

Multiple drug-resistant bacteria are a severe and growing public health concern. Because relatively few antibiotics have been approved over recent years and because of the inability of existing antibiotics to combat bacterial infections fully, demand for unconventional biocides is intense. Metallic nanoparticles (NPs) offer a novel potential means of fighting bacteria. Although metallic NPs exert their effects through membrane protein damage, superoxide radicals and the generation of ions that interfere with the cell granules leading to the formation of condensed particles, their antimicrobial potential, and mechanisms of action are still debated. This article discusses the action of metallic NPs as antibacterial agents, their mechanism of action, and their effect on bacterial drug resistance. Based on encouraging data about the antibacterial effects of NP/antibiotic combinations, we propose that this concept be thoroughly researched to identify means of combating drug-resistant bacteria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary D. Aron ◽  
Atousa Mehrani ◽  
Eric D. Hoffer ◽  
Kristie L. Connolly ◽  
Pooja Srinivas ◽  
...  

AbstractBacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


Sign in / Sign up

Export Citation Format

Share Document