scholarly journals Transcriptional heterogeneity of ventricular zone cells throughout the embryonic mouse forebrain

2021 ◽  
Author(s):  
Dongjin R Lee ◽  
Christopher Rhodes ◽  
Apratim Mitra ◽  
Yajun Zhang ◽  
Dragan Maric ◽  
...  

The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression. However, a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the mouse embryonic cortex and ganglionic eminences (GEs). By using a transgenic mouse line to enrich for VZ cells, we detect significant transcriptional heterogeneity within VZ and SVZ progenitors, both between forebrain regions and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of telencephalic VZ cells that will aid our understanding of initial fate decisions in the forebrain.

2014 ◽  
Vol 2 ◽  
pp. 121-130 ◽  
Author(s):  
Monica L. Rojas-Peña ◽  
Rene Olivares-Navarrete ◽  
Sharon Hyzy ◽  
Dalia Arafat ◽  
Zvi Schwartz ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 311-321 ◽  
Author(s):  
N. V. Welham ◽  
C. Ling ◽  
J. A. Dawson ◽  
C. Kendziorski ◽  
S. L. Thibeault ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 2143-2152 ◽  
Author(s):  
R.J. Wingate ◽  
A. Lumsden

Rhombomeres are morphological varicosities of the neural tube that are present between embryonic day (E) 1.5 and E5 and are characterised by compartment organisation, segmentally neuronal organisation and spatially restricted patterns of gene expression. After E5, the segmented origins of the hindbrain become indistinct, while the adult hindbrain has an longitudinal columnar nuclear organisation. In order to assess the impact of the early transverse pattern on later longitudinal organisation, we have used orthotopic quail grafts and in situ hybridisation to investigate the long-term fate of rhombomeres in the embryonic chick hindbrain. The uniformity of mixing between quail and chick cells was first verified using short-term aggregation cultures. The dispersal of the progeny of individual rhombomeres (r) was then assessed by the unilateral, isochronic and orthotopic transplantation of either r2, r3, r4, r5 or r6 from quail to chick at embryonic day E2. In addition, orthotopic, partial rhombomere grafts, encompassing an inter-rhombomere boundary and adjacent rhombomere bodies were used to assess cell mixing within rhombomeres. Operated embryos were incubated to either E7 or E10 when chimaeric brains were removed. Quail cells were identified in whole mounts or serial sections using the quail-specific antibody QCPN. Subsequently, radial glia morphology was assessed either by immunohistochemistry or DiI labelling. A series of fixed hindbrains between E6 and E9 were probed for transcripts of Hoxa-2 and Hoxb-1. Fate-mapping reveals that the progeny of individual rhombomeres form stripes of cells running dorsoventrally through the hindbrain. This pattern of dispersal precisely parallels the array of radial glia. Although the postmitotic progeny of adjacent rhombomeres spread to some extent into each others' territory in intermediate and marginal zones, there is little or no mixing between rhombomeres in the ventricular zone, which thus remains compartmentalised long after the rhombomeric morphology disappears. Segmental gene expression within this layer is also maintained after E5. A more detailed analysis of mixing between proliferating cells, using partial rhombomere grafts, reveals that both mixing and growth are non-uniform within the ventricular layer, suggesting, in particular, that longitudinal expansion within this layer is restricted. Together, these observations suggest that rhombomeres do not disappear at E5, as has previously been supposed, rather they persist in the ventricular zone to at least E9, ensuring a continuity in the presumed segmental cues that specify neuroepithelial cells in the hindbrain.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hani Jieun Kim ◽  
Patrick P. L. Tam ◽  
Pengyi Yang

AbstractIdentifying genes that define cell identity is a requisite step for characterising cell types and cell states and predicting cell fate choices. By far, the most widely used approach for this task is based on differential expression (DE) of genes, whereby the shift of mean expression are used as the primary statistics for identifying gene transcripts that are specific to cell types and states. While DE-based methods are useful for pinpointing genes that discriminate cell types, their reliance on measuring difference in mean expression may not reflect the biological attributes of cell identity genes. Here, we highlight the quest for non-DE methods and provide an overview of these methods and their applications to identify genes that define cell identity and functionality.


Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Lluc Mosteiro ◽  
Hanaa Hariri ◽  
Jelle van den Ameele

ABSTRACT The intimate relationships between cell fate and metabolism have long been recognized, but a mechanistic understanding of how metabolic pathways are dynamically regulated during development and disease, how they interact with signalling pathways, and how they affect differential gene expression is only emerging now. We summarize the key findings and the major themes that emerged from the virtual Keystone Symposium ‘Metabolic Decisions in Development and Disease’ held in March 2021.


2019 ◽  
Author(s):  
Ayse Güven ◽  
Denise Stenzel ◽  
Katherine R. Long ◽  
Marta Florio ◽  
Holger Brandl ◽  
...  

AbstractNeocortex expansion is largely based on the proliferative capacity of basal progenitors (BPs), which is increased by extracellular matrix (ECM) components via integrin signaling. Here we show that Sox9 drives expression of ECM components and that laminin 211 increases BP proliferation in embryonic mouse neocortex. Examination of Sox9 expression reveals that Sox9 is expressed in BPs of developing ferret and human, but not mouse neocortex. Functional studies by conditional Sox9 expression in the mouse BP lineage demonstrate increased BP proliferation, reduced Tbr2 and induction of Olig2 expression, indicative of premature gliogenesis. Conditional Sox9 expression also results in cell non-autonomous stimulation of BP proliferation followed by increased production of upper-layer neurons. Collectively, our findings demonstrate that Sox9 exerts concerted effects on transcription, BP proliferation, neuron production, and neurogenic as well as gliogenic BP cell fate, suggesting that Sox9 acts a master regulator in the subventricular zone to promote neocortical expansion.


ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141983018 ◽  
Author(s):  
Nolan B. Skop ◽  
Sweta Singh ◽  
Henri Antikainen ◽  
Chaitali Saqcena ◽  
Frances Calderon ◽  
...  

There is intense interest and effort toward regenerating the brain after severe injury. Stem cell transplantation after insult to the central nervous system has been regarded as the most promising approach for repair; however, engrafting cells alone might not be sufficient for effective regeneration. In this study, we have compared neural progenitors (NPs) from the fetal ventricular zone (VZ), the postnatal subventricular zone, and an immortalized radial glia (RG) cell line engineered to conditionally secrete the trophic factor insulin-like growth factor 1 (IGF-1). Upon differentiation in vitro, the VZ cells were able to generate a greater number of neurons than subventricular zone cells. Furthermore, differentiated VZ cells generated pyramidal neurons . In vitro, doxycycline-driven secretion of IGF-1 strongly promoted neuronal differentiation of cells with hippocampal, interneuron and cortical specificity. Accordingly, VZ and engineered RG-IGF-1-hemagglutinin (HA) cells were selected for subsequent in vivo experiments. To increase cell survival, we delivered the NPs attached to a multifunctional chitosan-based scaffold. The microspheres containing adherent NPs were injected subacutely into the lesion cavity of adult rat brains that had sustained controlled cortical impact injury. At 2 weeks posttransplantation, the exogenously introduced cells showed a reduction in stem cell or progenitor markers and acquired mature neuronal and glial markers. In beam walking tests assessing sensorimotor recovery, transplanted RG cells secreting IGF-1 contributed significantly to functional improvement while native VZ or RG cells did not promote significant recovery. Altogether, these results support the therapeutic potential of chitosan-based multifunctional microsphere scaffolds seeded with genetically modified NPs expressing IGF-1 to promote repair and functional recovery after traumatic brain injuries.


Sign in / Sign up

Export Citation Format

Share Document