scholarly journals Rate-Based Decoding of Images from Multi-Region, High Resolution, Electrode Recordings In the Mouse Visual System

2021 ◽  
Author(s):  
Christopher B Fritz

We hypothesize that deep networks are superior to linear decoders at recovering visual stimuli from neural activity. Using high-resolution, multielectrode Neuropixels recordings, we verify this is the case for a simple feed-forward deep neural network having just 7 layers. These results suggest that these feed-forward neural networks and perhaps more complex deep architectures will give superior performance in a visual brain-machine interface.

2021 ◽  
Vol 169 ◽  
pp. 114520
Author(s):  
Abdullah Emir Cil ◽  
Kazim Yildiz ◽  
Ali Buldu

2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Omar Nassef ◽  
Toktam Mahmoodi ◽  
Foivos Michelinakis ◽  
Kashif Mahmood ◽  
Ahmed Elmokashfi

This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.


2013 ◽  
Vol 461 ◽  
pp. 565-569 ◽  
Author(s):  
Fang Wang ◽  
Kai Xu ◽  
Qiao Sheng Zhang ◽  
Yi Wen Wang ◽  
Xiao Xiang Zheng

Brain-machine interfaces (BMIs) decode cortical neural spikes of paralyzed patients to control external devices for the purpose of movement restoration. Neuroplasticity induced by conducting a relatively complex task within multistep, is helpful to performance improvements of BMI system. Reinforcement learning (RL) allows the BMI system to interact with the environment to learn the task adaptively without a teacher signal, which is more appropriate to the case for paralyzed patients. In this work, we proposed to apply Q(λ)-learning to multistep goal-directed tasks using users neural activity. Neural data were recorded from M1 of a monkey manipulating a joystick in a center-out task. Compared with a supervised learning approach, significant BMI control was achieved with correct directional decoding in 84.2% and 81% of the trials from naïve states. The results demonstrate that the BMI system was able to complete a task by interacting with the environment, indicating that RL-based methods have the potential to develop more natural BMI systems.


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


2018 ◽  
Vol 468 ◽  
pp. 142-154 ◽  
Author(s):  
Hui Liu ◽  
Jun Xu ◽  
Yan Wu ◽  
Qiang Guo ◽  
Bulat Ibragimov ◽  
...  

Author(s):  
Tshilidzi Marwala

In this chapter, a classifier technique that is based on a missing data estimation framework that uses autoassociative multi-layer perceptron neural networks and genetic algorithms is proposed. The proposed method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey and compared to conventional feed-forward neural networks. The missing data approach based on the autoassociative network model proposed gives an accuracy of 92%, when compared to the accuracy of 84% obtained from the conventional feed-forward neural network models. The area under the receiver operating characteristics curve for the proposed autoassociative network model is 0.86 compared to 0.80 for the conventional feed-forward neural network model. The autoassociative network model proposed in this chapter, therefore, outperforms the conventional feed-forward neural network models and is an improved classifier. The reasons for this are: (1) the propagation of errors in the autoassociative network model is more distributed while for a conventional feed-forward network is more concentrated; and (2) there is no causality between the demographic properties and the HIV and, therefore, the HIV status does change the demographic properties and vice versa. Therefore, it is better to treat the problem as a missing data problem rather than a feed-forward problem.


2013 ◽  
Vol 471 ◽  
pp. 40-44 ◽  
Author(s):  
Ahmad Kadri Junoh ◽  
Zulkifli Mohd Nopiah ◽  
Ahmad Kamal Ariffin

Vehicle acoustical comfort and vibration in a passenger car cabin are the main factors that attract a buyer in car purchase. Numerous studies have been carried out by automotive researchers to identify and classify the acoustics level in the vehicle cabin. The objective is to form a special benchmark for acoustics level that may be referred for any acoustics improvement purpose. This study is focused on the sound quality change over the engine speed [rp to recognize the noise pattern experienced in the vehicle cabin. Since it is difficult for a passenger to express, and to evaluate the noise experienced or heard in a numerical scale, a neural network optimization approach is used to classify the acoustics levels into groups of noise annoyance levels. A feed forward neural network technique is applied for classification algorithm, where it can be divided into two phases: Learning Phase and Classification Phase. The developed model is able to classify the acoustics level into numerical scales which are meaningful for evaluation purposes.


Sign in / Sign up

Export Citation Format

Share Document