scholarly journals Flexible utilization of spatial- and motor-based codes for the storage of visuo-spatial information

2021 ◽  
Author(s):  
Margaret M. Henderson ◽  
Rosanne L. Rademaker ◽  
John T. Serences

Working memory (WM) provides flexible storage of information in service of upcoming behavioral goals. Some models propose specific fixed loci and mechanisms for the storage of visual information in WM, such as sustained spiking in parietal and prefrontal cortex during the maintenance of features. An alternative view is that information can be remembered in a flexible format that best suits current behavioral goals. For example, remembered visual information might be stored in sensory areas for easier comparison to future sensory inputs (i.e. a retrospective code) or might be remapped into a more abstract, output-oriented format and stored in motor areas (i.e. a prospective code). Here, we tested this hypothesis using a visual-spatial working memory task where the required behavioral response was either known or unknown during the memory delay period. Using fMRI and multivariate decoding, we found that there was less information about remembered spatial positions in early visual and parietal regions when the required response was known versus unknown. Further, a representation of the planned motor action emerged in primary somatosensory, primary motor, and premotor cortex on the same trials where spatial information was reduced in early visual cortex. These results suggest that the neural networks supporting WM can be strategically reconfigured depending on the specific behavioral requirements of canonical visual WM paradigms.

2004 ◽  
Vol 35 (4) ◽  
pp. 185-192 ◽  
Author(s):  
Verner Knott ◽  
Anne Millar ◽  
Louise Dulude ◽  
Lisa Bradford ◽  
Fahad Alwahhabi ◽  
...  

2014 ◽  
Vol 7 (2) ◽  
Author(s):  
Joshua T. Gaunt ◽  
Bruce Bridgeman

Microsaccade rates and directions were monitored while observers performed a visual working memory task at varying retinal eccentricities. We show that microsaccades generate no interference in a working memory task, indicating that spatial working memory is at least partially insulated from oculomotor activity. Intervening tasks during the memory interval affected microsaccade patterns; microsaccade frequency was consistently higher during concurrent spatial tapping (no visual component) than during exposure to dynamic visual noise (no task). Average microsaccade rate peaked after appearance of a fixation cross at the start of a trial, and dipped at cue onset and offset, consistent with previous results. Direction of stimuli in choice tasks did not influence microsaccade direction,however.


2021 ◽  
Vol 11 (2) ◽  
pp. 291-300
Author(s):  
Giorgio Guidetti ◽  
Riccardo Guidetti ◽  
Silvia Quaglieri

Hearing loss and chronic vestibular pathologies require brain adaptive mechanisms supported by a cross-modal cortical plasticity. They are often accompanied by cognitive deficits. Spatial memory is a cognitive process responsible for recording information about the spatial environment and spatial orientation. Visual-spatial working memory (VSWM) is a kind of short-term working memory that allows spatial information to be temporarily stored and manipulated. It can be conditioned by hearing loss and also well-compensated chronic vestibular deficit. Vestibular rehabilitation and hearing aid devices or training are able to improve the VSWM. We studied 119 subjects suffering from perinatal or congenital hearing loss, compared with 532 healthy subjects and 404 patients with well-compensated chronic vestibular deficit (CVF). VSWM was evaluated by the eCorsi test. The subjects suffering from chronic hearing loss and/or unilateral or bilateral vestibular deficit showed a VSWM less efficient than healthy people, but much better than those with CVF, suggesting a better multimodal adaptive strategy, probably favored by a cross-modal plasticity which also provides habitual use of lip reading. The sport activity cancels the difference with healthy subjects. It is therefore evident that patients with this type of deficit since childhood should be supported and advised on a sport activity or repeated vestibular stimulation.


2012 ◽  
Vol 5 (5) ◽  
Author(s):  
Joshua T. Gaunt ◽  
Bruce Bridgeman

Observers performed working memory tasks at varying retinal eccentricities, fixating centrally while microsaccade rates and directions were monitored. We show that microsaccades generate no interference in a working memory task, indicating that spatial working memory is at least partially insulated from oculomotor activity. Intervening tasks during the memory interval affected memory as well as microsaccade patterns. Average microsaccade rate peaks after appearance of a fixation cross at the start of a trial, and dips at cue onset and offset. Direction of stimuli in choice tasks did not influence micro-saccade direction, however. Poorer memory accuracy for locations at greater retinal eccentricity calls for revising ideas of short-term spatial representations to include retinotopic or allocentric codes


2021 ◽  
Vol 15 ◽  
Author(s):  
Tara R. Ghazi ◽  
Kara J. Blacker ◽  
Thomas T. Hinault ◽  
Susan M. Courtney

Peak alpha frequency is known to vary not just between individuals, but also within an individual over time. While variance in this metric between individuals has been tied to working memory performance, less understood are how short timescale modulations of peak alpha frequency during task performance may facilitate behavior. This gap in understanding may be bridged by consideration of a key difference between individuals: sex. Inconsistent findings in the literature regarding the relationship between peak alpha frequency and cognitive performance, as well as known sex-related-differences in peak alpha frequency and its modulation motivated our hypothesis that cognitive and neural processes underlying working memory—modulation of peak alpha frequency in particular—may differ based upon sex. Targeting sex as a predictive factor, we analyzed the EEG data of participants recorded while they performed four versions of a visual spatial working memory task. A significant difference between groups was present: females modulated peak alpha frequency more than males. Task performance did not differ by sex, yet a relationship between accuracy and peak alpha frequency was present in males, but not in females. These findings highlight the importance of considering sex as a factor in the study of oscillatory activity, particularly to further understanding of the neural mechanisms that underlie working memory.


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


2021 ◽  
pp. 108705472110120
Author(s):  
Kelly D. Carrasco ◽  
Chi-Ching Chuang ◽  
Gail Tripp

Objective: To identify common and shared predictors of academic achievement across samples of children with ADHD. Method: Two clinically referred samples from New Zealand (1 n = 88, 82% boys; 2 n = 121, 79% boys) and two community samples from the United States (3 n = 111, 65% boys; 4 n = 114, 69% boys), completed similar diagnostic, cognitive and academic assessments. Hierarchical multiple regression analyses identified significant predictors of word reading, spelling, and math computation performance in each sample. Results: Entered after IQ, semantic language, age at testing, and verbal working memory emerged as consistent predictors of achievement across academic subjects and samples. Visual-spatial working memory contributed to variance in math performance only. Symptom severity explained limited variance. Conclusions: We recommend evaluations of children with ADHD incorporate assessments of working memory and language skills. Classroom/academic interventions should accommodate reduced working memory and address any identified language weaknesses.


2001 ◽  
Vol 31 (5) ◽  
pp. 915-922 ◽  
Author(s):  
S. KÉRI ◽  
O. KELEMEN ◽  
G. BENEDEK ◽  
Z. JANKA

Background. The aim of this study was to assess visual information processing and cognitive functions in unaffected siblings of patients with schizophrenia, bipolar disorder and control subjects with a negative family history.Methods. The siblings of patients with schizophrenia (N = 25), bipolar disorder (N = 20) and the controls subjects (N = 20) were matched for age, education, IQ, and psychosocial functioning, as indexed by the Global Assessment of Functioning scale. Visual information processing was measured using two visual backward masking (VBM) tests (target location and target identification). The evaluation of higher cognitive functions included spatial and verbal working memory, Wisconsin Card Sorting Test, letter fluency, short/long delay verbal recall and recognition.Results. The relatives of schizophrenia patients were impaired in the VBM procedure, more pronouncedly at short interstimulus intervals (14, 28, 42 ms) and in the target location task. Marked dysfunctions were also found in the spatial working memory task and in the long delay verbal recall test. In contrast, the siblings of patients with bipolar disorder exhibited spared performances with the exception of a deficit in the long delay recall task.Conclusions. Dysfunctions of sensory-perceptual analysis (VBM) and working memory for spatial information distinguished the siblings of schizophrenia patients from the siblings of individuals with bipolar disorder. Verbal recall deficit was present in both groups, suggesting a common impairment of the fronto-hippocampal system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


Sign in / Sign up

Export Citation Format

Share Document