scholarly journals A novel non-antibiotic selectable marker GASA6 for plant transformation

2021 ◽  
Author(s):  
Yuewan Luo ◽  
Jiena Gu ◽  
Xiaojing Wang ◽  
Shengchun Zhang

Selectable markers help the transformed cell/tissue to survive in an otherwise lethal exposure of an antibiotic or herbicide. Unfortunately, almost all the traditional selectable markers are antibiotic and herbicide resistance genes, which are controversial on human health concerns and environmental impact. Novel plant-derived, non-antibiotic, and non-herbicide selectable markers are urgently needed in plant transformation. Our previous work showed that the seedlings of overexpression Arabidopsis lines of AtGASA6 survived on medium with a high concentration of sugar, which leads to the hypothesis that AtGASA6 could be a selectable marker on media with high or low sugar content. In this study, leaf explants of AtGASA6 overexpression tobacco lines regenerated shoots on sugar-free shooting medium while those of wild type could not. Moreover, the seeds of AtGASA6 overexpression tobacco lines germinated and grew into normal seedlings on sugar-free MS medium while those of WT could not. Attractively, no developmental defects were observed in AtGASA6 transgenic progenies. Using AtGASA6 as a selectable marker, overexpression tobacco lines of GAI, which restrains plant size, were created on sugar-free media. The GAI overexpression lines had a smaller plant size than that of control. Considering its plant-derived and non-antibiotic nature, GASA6 is promising to be used as a selectable marker in plant transformation.

2021 ◽  
Author(s):  
Yuewan Luo ◽  
Jiena Gu ◽  
Xiaojing Wang ◽  
Shengchun Zhang

Abstract Selectable markers help the transformed cell/tissue to survive in an otherwise lethal exposure of an antibiotic or herbicide. Unfortunately, almost all the traditional selectable markers are antibiotic and herbicide resistance genes, which are controversial on human health concerns and environmental impact. Novel plant-derived, non-antibiotic, and non-herbicide selectable markers are urgently needed in plant transformation. Our previous work showed that the seedlings of overexpression Arabidopsis lines of AtGASA6 survived on medium with a high concentration of sugar, which leads to the hypothesis that AtGASA6 could be a selectable marker on media with high or low sugar content. In this study, leaf explants of AtGASA6 overexpression tobacco lines regenerated shoots on sugar-free shooting medium while those of wild type could not. Moreover, the seeds of AtGASA6 overexpression tobacco lines germinated and grew into normal seedlings on sugar-free MS medium while those of WT could not. Attractively, no developmental defects were observed in AtGASA6 transgenic progenies. Using AtGASA6 as a selectable marker, overexpression tobacco lines of GAI , which restrains plant size, were created on sugar-free media. The GAI overexpression lines had a smaller plant size than that of control. Considering its plant-derived and non-antibiotic nature, GASA6 is promising to be used as a selectable marker in plant transformation.


Author(s):  
N.Z. Hafizah ◽  
J. M. Juoi ◽  
M.R. Zulkifli ◽  
M.A. Musa

The synthesis of Ag-TiO2 coating using AgNO3 precursor is expected to give the properties as pure as Ag nanoparticles. Commonly, high concentration of Ag attributed to agglomeration of silver species and reduction to Ag0 particles on TiO2 surface. In contrast, at lower concentration, Ag species exist as AgO, Ag2O and Ag0. Hence, the exact amount of Ag, which can effectively control the particle growth and agglomeration, surface area, thermal stability and band gap of the TiO2 coating, are still vague and stated differently. In the present study, the effect of Ag content on the phase transformation and surface morphology of Ag-TiO2 coating were reported. TiO2 sol were prepared by incorporating Ag at 2.5, 5 and 7.5 mol % and deposited on unglazed ceramic tiles thru five times dip coating. The deposited Ag-TiO2 coatings were heat treated at 500 °C for 1 hour soaking time. XRD analyses revealed that the deposited Ag-TiO2 coating consists of anatase, rutile, Ag2O and metallic Ag. Almost all the coating surfaces illustrated cracks. Increased Ag content lead to presence of tiny particles on the surfaces and EDX spectrum revealed the presence of Ti, O and metallic Ag particles. However, at the addition of 5 mol % Ag, there was no metallic Ag presence and a dense coating with the lowest thickness of ±11.4µm is observed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Khaleghipour ◽  
Javier A. Linares-Pastén ◽  
Hamid Rashedi ◽  
Seyed Omid Ranaei Siadat ◽  
Andrius Jasilionis ◽  
...  

AbstractSugarcane processing roughly generates 54 million tonnes sugarcane bagasse (SCB)/year, making SCB an important material for upgrading to value-added molecules. In this study, an integrated scheme was developed for separating xylan, lignin and cellulose, followed by production of xylo-oligosaccharides (XOS) from SCB. Xylan extraction conditions were screened in: (1) single extractions in NaOH (0.25, 0.5, or 1 M), 121 °C (1 bar), 30 and 60 min; (2) 3 × repeated extraction cycles in NaOH (1 or 2 M), 121 °C (1 bar), 30 and 60 min or (3) pressurized liquid extractions (PLE), 100 bar, at low alkalinity (0–0.1 M NaOH) in the time and temperature range 10–30 min and 50–150 °C. Higher concentration of alkali (2 M NaOH) increased the xylan yield and resulted in higher apparent molecular weight of the xylan polymer (212 kDa using 1 and 2 M NaOH, vs 47 kDa using 0.5 M NaOH), but decreased the substituent sugar content. Repeated extraction at 2 M NaOH, 121 °C, 60 min solubilized both xylan (85.6% of the SCB xylan), and lignin (84.1% of the lignin), and left cellulose of high purity (95.8%) in the residuals. Solubilized xylan was separated from lignin by precipitation, and a polymer with β-1,4-linked xylose backbone substituted by arabinose and glucuronic acids was confirmed by FT-IR and monosaccharide analysis. XOS yield in subsequent hydrolysis by endo-xylanases (from glycoside hydrolase family 10 or 11) was dependent on extraction conditions, and was highest using xylan extracted by 0.5 M NaOH, (42.3%, using Xyn10A from Bacillus halodurans), with xylobiose and xylotriose as main products. The present study shows successful separation of SCB xylan, lignin, and cellulose. High concentration of alkali, resulted in xylan with lower degree of substitution (especially reduced arabinosylation), while high pressure (using PLE), released more lignin than xylan. Enzymatic hydrolysis was more efficient using xylan extracted at lower alkaline strength and less efficient using xylan obtained by PLE and 2 M NaOH, which may be a consequence of polymer aggregation, via remaining lignin interactions.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Manjing Lu ◽  
Jiaqi Wang ◽  
Yuzhong Wang ◽  
Zhengguang He

Chemical synthetic pharmaceutical wastewater has characteristics of high concentration, high toxicity and poor biodegradability, so it is difficult to directly biodegrade. We used acid modified attapulgite (ATP) supported Fe-Mn-Cu polymetallic oxide as catalyst for multi-phase Fenton-like ultraviolet photocatalytic oxidation (photo-Fenton) treatment with actual chemical synthetic pharmaceutical wastewater as the treatment object. The results showed that at the initial pH of 2.0, light distance of 20 cm, and catalyst dosage and hydrogen peroxide concentration of 10.0 g/L and 0.5 mol/L respectively, the COD removal rate of wastewater reached 65% and BOD5/COD increased to 0.387 when the reaction lasted for 180 min. The results of gas chromatography-mass spectrometry (GC-MS) indicated that Fenton-like reaction with Fe-Mn-Cu@ATP had good catalytic potential and significant synergistic effect, and could remove almost all heterocycle compounds well. 3D-EEM (3D electron microscope) fluorescence spectra showed that the fluorescence intensity decreased significantly during catalytic degradation, and the UV humus-like and fulvic acid were effectively removed. The degradation efficiency of the nanocomposite only decreased by 5.8% after repeated use for 6 cycles. It seems appropriate to use this process as a pre-treatment for actual pharmaceutical wastewater to facilitate further biological treatment.


1998 ◽  
Vol 123 (2) ◽  
pp. 189-194 ◽  
Author(s):  
John M. Sherman ◽  
James W. Moyer ◽  
Margaret E. Daub

An efficient, high-frequency regeneration and Agrobacterium-mediated transformation system was developed allowing the genetic engineering of three chrysanthemum (Dendranthema grandiflora Tzvelev) cultivars: the formerly recalcitrant and economically important cut-flower mum `Polaris' and two potted mums, `Hekla' and `Iridon'. The regeneration protocol used leaf explants on a sequence of media with four hormone regimes. Explants were first cultured on an embryogenesis-type medium containing a high concentration of 2,4-D, which promoted callus formation. Shoot primordia were induced by culture on medium lacking 2,4-D, followed by shoot elongation on a high-cytokinin plus gibberellic acid medium. Finally, elongated shoots were rooted on a low-auxin rooting medium. Transformed plants of the three cultivars were obtained following co-culture of leaf explants with A. tumefaciens strain EHA 105 harboring the plasmid pBI121 containing genes for neomycin phosphotransferase II (NPTII) and β-glucuronidase (GUS). Stable transformation of the three cultivars was verified via GUS assays and Southern analysis.


2019 ◽  
Vol 4 (2) ◽  
pp. 97-104
Author(s):  
Lazuardi Umar ◽  
Yanuar Hamzah ◽  
Rahmondia N. Setiadi

This paper describes a design of a fry counter intended to be used by consuming fish farmer. Along this time, almost all the fry counting process is counted by manual, which is done by a human. It is requiring much energy and needs high concentration; thus, can cause a high level of exhaustion for the fry counting worker. Besides that, the human capability and capacity of counting are limited to a low level. A fry counter design in this study utilizes a multi-channel optocoupler sensor to increase the counting capacity. The multi-channel fry counter counting system is developed as a solution to a limited capacity of available fry counter. This design uses an input signal extender system on controller including the interrupt system. From the experiment, high accuracy level is obtained on the counting and channel detection, therefore, this design can be implemented and could help farmers to increase the production capacity of consuming fish.


2020 ◽  
Vol 49 (3) ◽  
pp. 667-672
Author(s):  
Mingxia Fan ◽  
Nian Liu ◽  
Xiangji Wu ◽  
Jibin Zhang ◽  
Minmin Cai

Abstract Polycyclic aromatic hydrocarbons (PAHs), as well-recognized toxic chemical, cause the public hazard in environments. Here, we demonstrated the black soldier fly larvae (BSFL) could tolerate the PAHs and reduce their content. Four typical PAHs (1.0, 10.0, and 100.0 mg/kg), naphthalene, fluorene, phenanthrene, and pyrene, were individually spiked into BSFL conversion systems. The parameters for larval growth, conversion process, and PAHs removal were determined in spiked group and no-spiked control. The results show that the larval development time (19.7–21.0 d) in the half of PAH groups was significantly longer by 2–4 d than those in the control, while the relative growth rates (1.88–1.99% per day) in the majority PAH groups were lower. The larval mortalities (0–2.83%), harvest yields (80.20–85.91 g), conversion rates (14.71–15.83%), and eclosion rates (60.27–82.67%) in almost all of PAH groups did not significantly different from those in the control. The four PAHs potentially delayed the development time of BSFL, slowed the larval growth, and lower waste reduction rates, but these influences were slight and might be caused by the inhibition of PAHs to microbial activity. The BSFL-mortalities, conversion rates, yields, and eclosion rates were not significantly affected by the PAHs. Furthermore, BSFL effectively removed 34.1–84.2% of PAHs from subtracts in 18–21 d. The removal of PAHs with low concentration could be easier than those with high concentration by BSFL. The present results provide an alternative strategy to treat the waste contaminated by PAHs and elucidate the effect of PAHs on insects in the environment.


2008 ◽  
Vol 74 (14) ◽  
pp. 4498-4508 ◽  
Author(s):  
Ashley R. Barrett ◽  
Yun Kang ◽  
Ken S. Inamasu ◽  
Mike S. Son ◽  
Joseph M. Vukovich ◽  
...  

ABSTRACT Allelic replacement in the Burkholderia genus has been problematic due to the lack of appropriate counter-selectable and selectable markers. The counter-selectable marker sacB, commonly used in gram-negative bacteria, is nonselective on sucrose in many Burkholderia species. In addition, the use of antibiotic resistance markers of clinical importance for the selection of desirable genetic traits is prohibited in the United States for two potential bioterrorism agents, Burkholderia mallei and Burkholderia pseudomallei. Here, we engineered a mutated counter-selectable marker based on the B. pseudomallei PheS (the α-subunit of phenylalanyl tRNA synthase) protein and tested its effectiveness in three different Burkholderia species. The mutant PheS protein effectively killed 100% of the bacteria in the presence of 0.1% p-chlorophenylalanine. We assembled the mutant pheS on several allelic replacement vectors, in addition to constructing selectable markers based on tellurite (Telr) and trimethoprim (Tpr) resistance that are excisable by flanking unique FLP recombination target (FRT) sequences. As a proof of concept, we utilized one of these gene replacement vectors (pBAKA) and the Telr-FRT cassette to produce a chromosomal mutation in the Burkholderia thailandensis betBA operon, which codes for betaine aldehyde dehydrogenase and choline dehydrogenase. Chromosomal resistance markers could be excised by the introduction of pFLP-AB5 (Tpr), which is one of two constructed flp-containing plasmids, pFLP-AB4 (Telr) and pFLP-AB5 (Tpr). These flp-containing plasmids harbor the mutant pheS gene and allow self curing on media that contain p-chlorophenylalanine after Flp-FRT excision. The characterization of the ΔbetBA::Telr-FRT and ΔbetBA::FRT mutants indicated a defect in growth with choline as a sole carbon source, while these mutants grew as well as the wild type with succinate and glucose as alternative carbon sources.


2002 ◽  
Vol 38 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Suprasanna Penna ◽  
László Sági ◽  
Rony Swennen

Sign in / Sign up

Export Citation Format

Share Document