scholarly journals A coordinated function of lncRNA HOTTIP and miRNA-196b underpinning leukemogenesis by targeting Fas signaling

2021 ◽  
Author(s):  
Ajeet Singh ◽  
Huacheng Luo ◽  
Meghana Matur ◽  
Melanie Eshelman ◽  
Arati Sharma ◽  
...  

MicroRNAs (miRNAs) may modulate more than 60% of human coding genes and act as negative regulators, while long non-coding RNAs (lncRNAs) regulate gene expression on multiple levels by interacting with chromatin, functional proteins, and RNAs such as mRNAs and microRNAs. However, the crosstalk between lncRNA HOTTIP and miRNAs in leukemogenesis remains elusive. Using combined integrated analyses of global miRNA expression profiling and state-of-the-art genomic analyses of chromatin such as ChIRPseq., (genome wide HOTTIP binding analysis), ChIP-seq., and ATACseq., we found that miRNA genes are directly controlled by HOTTIP. Specifically, the HOX cluster miRNAs (miR-196a, miR-196b, miR-10a and miR-10b), located cis & trans, were most dramatically regulated and significantly decreased in HOTTIP knockout (KO) AML cells. HOTTIP bound to the miR-196b promoter, and HOTTIP deletion reduced chromatin accessibility and enrichment of active histone modifications at HOX cluster associated miRNAs in AML cells, while reactivation of HOTTIP restored miR gene expression and chromatin accessibility in the CTCF-boundary-attenuated AML cells. Inactivation of HOTTIP or miR-196b promotes apoptosis by altering the chromatin signature at the FAS promoter and increasing FAS expression. Transplantation of miR-196b knockdown MOLM13 cells in NSG mice increased overall survival compared to wild-type cells. Thus, HOTTIP remodels the chromatin architecture around miRNAs to promote their transcription, consequently repressing tumor suppressors and promoting leukemogenesis.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Rafael Renatino-Canevarolo ◽  
Mark B. Meads ◽  
Maria Silva ◽  
Praneeth Reddy Sudalagunta ◽  
Christopher Cubitt ◽  
...  

Multiple myeloma (MM) is an incurable cancer of bone marrow-resident plasma cells, which evolves from a premalignant state, MGUS, to a form of active disease characterized by an initial response to therapy, followed by cycles of therapeutic successes and failures, culminating in a fatal multi-drug resistant cancer. The molecular mechanisms leading to disease progression and refractory disease in MM remain poorly understood. To address this question, we have generated a new database, consisting of 1,123 MM biopsies from patients treated at the H. Lee Moffitt Cancer Center. These samples ranged from MGUS to late relapsed/refractory (LR) disease, and were comprehensively characterized genetically (844 RNAseq, 870 WES, 7 scRNAseq), epigenetically (10 single-cell chromatin accessibility, scATAC-seq) and phenotypically (537 samples assessed for ex vivo drug resistance). Mutational analysis identified putative driver genes (e.g. NRAS, KRAS) among the highest frequent mutations, as well as a steady increase in mutational load across progression from MGUS to LR samples. However, with the exception of KRAS, these genes did not reach statistical significance according to FISHER's exact test between different disease stages, suggesting that no single mutation is necessary or sufficient to drive MM progression or refractory disease, but rather a common "driver" biology is critical. Pathway analysis of differentially expressed genes identified cell adhesion, inflammatory cytokines and hematopoietic cell identify as under-expressed in active MM vs. MGUS, while cell cycle, metabolism, DNA repair, protein/RNA synthesis and degradation were over-expressed in LR. Using an unsupervised systems biology approach, we reconstructed a gene expression map to identify transcriptomic reprogramming events associated with disease progression and evolution of drug resistance. At an epigenetic regulatory level, these genes were enriched for histone modifications (e.g. H3k27me3 and H3k27ac). Furthermore, scATAC-seq confirmed genome-wide alterations in chromatin accessibility across MM progression, involving shifts in chromatin accessibility of the binding motifs of epigenetic regulator complexes, known to mediate formation of 3D structures (CTCF/YY1) of super enhancers (SE) and cell identity reprograming (POU5F1/SOX2). Additionally, we have identified SE-regulated genes under- (EBF1, RB1, SPI1, KLF6) and over-expressed (PRDM1, IRF4) in MM progression, as well as over-expressed in LR (RFX5, YY1, NBN, CTCF, BCOR). We have found a correlation between cytogenetic abnormalities and mutations with differential gene expression observed in MM progression, suggesting groups of genetic events with equivalent transcriptomic effect: e.g. NRAS, KRAS, DIS3 and del13q are associated with transcriptomic changes observed during MGUS/SMOL=>active MM transition (Figure 1). Taken together, our preliminary data suggests that multiple independent combinations of genetic and epigenetic events (e.g. mutations, cytogenetics, SE dysregulation) alter the balance of master epigenetic regulatory circuitry, leading to genome-wide transcriptional reprogramming, facilitating disease progression and emergence of drug resistance. Figure 1: Topology of transcriptional regulation in MM depicts 16,738 genes whose expression is increased (red) or decreased (green) in presence of genetic abnormality. Differential expression associated with (A) hotspot mutations and (B) cytogenetic abnormalities confirms equivalence of expected pairs (e.g. NRAS and KRAS, BRAF and RAF1), but also proposes novel transcriptomic dysregulation effect of clinically relevant cytogenetic abnormalities, with yet uncharacterized molecular role in MM. Figure 1 Disclosures Kulkarni: M2GEN: Current Employment. Zhang:M2GEN: Current Employment. Hampton:M2GEN: Current Employment. Shain:GlaxoSmithKline: Speakers Bureau; Amgen: Speakers Bureau; Karyopharm: Research Funding, Speakers Bureau; AbbVie: Research Funding; Takeda: Honoraria, Speakers Bureau; Sanofi/Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Adaptive: Consultancy, Honoraria; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Siqueira Silva:AbbVie: Research Funding; Karyopharm: Research Funding; NIH/NCI: Research Funding.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Noam Shomron ◽  
David Golan ◽  
Eran Hornstein

MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through translational inhibition or mRNA degradation by binding to sequences on the target mRNA. miRNA regulation appears to be the most abundant mode of posttranscriptional regulation affecting 50% of the transcriptome. miRNA genes are often clustered and/or located in introns, and each targets a variable and often large number of mRNAs. Here we discuss the genomic architecture of animal miRNA genes and their evolving interaction with their target mRNAs.


2021 ◽  
Vol 5 (9) ◽  
pp. 2339-2349
Author(s):  
Marja W. Wessels ◽  
Marjon H. Cnossen ◽  
Thamar B. van Dijk ◽  
Nynke Gillemans ◽  
K. L. Juliëtte Schmidt ◽  
...  

Abstract The BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo. We describe a patient with a de novo heterozygous variant, c.1453G>T, in the BCL11A gene, resulting in truncation of the BCL11A-XL protein (p.Glu485X). The truncated protein lacks the 3 C-terminal DNA-binding zinc fingers and the nuclear localization signal, rendering it inactive. The patient displayed high fetal hemoglobin (HbF) levels (12.1-18.7% of total hemoglobin), in contrast to the parents who had HbF levels of 0.3%. We used cultures of patient-derived erythroid progenitors to determine changes in gene expression and chromatin accessibility. In addition, we investigated DNA methylation of the promoters of the γ-globin genes HBG1 and HBG2. HUDEP1 and HUDEP2 cells were used as models for fetal and adult human erythropoiesis, respectively. Similar to HUDEP1 cells, the patient’s cells displayed Assay for Transposase-Accessible Chromatin (ATAC) peaks at the HBG1/2 promoters and significant expression of HBG1/2 genes. In contrast, HBG1/2 promoter methylation and genome-wide gene expression profiling were consistent with normal adult erythropoiesis. We conclude that HPFH is the major erythroid phenotype of constitutive BCL11A haploinsufficiency. Given the essential functions of BCL11A in other hematopoietic lineages and the neuronal system, erythroid-specific targeting of the BCL11A gene has been proposed for reactivation of γ-globin expression in β-hemoglobinopathy patients. Our data strongly support this approach.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 93
Author(s):  
Peng Qin ◽  
Ann E. Loraine ◽  
Sheila McCormick

Background: cis-NATs (cis-natural antisense transcripts) are transcribed from opposite strands of adjacent genes and have been shown to regulate gene expression by generating small RNAs from the overlapping region. cis-NATs are important for plant development and resistance to pathogens and stress. Several genome-wide investigations identified a number of cis-NAT pairs, but these investigations predicted cis-NATS using expression data from bulk samples that included lots of cell types. Some cis-NAT pairs identified from those investigations might not be functional, because both transcripts of cis-NAT pairs need to be co-expressed in the same cell. Pollen only contains two cell types, two sperm and one vegetative cell, which makes cell-specific investigation of cis-NATs possible. Methods: We investigated potential protein-coding cis-NATs in pollen and sperm using pollen RNA-seq data and TAIR10 gene models using the Integrated Genome Browser.  We then used sperm microarray data and sRNAs in sperm and pollen to determine possibly functional cis-NATs in the sperm or vegetative cell, respectively. Results: We identified 1471 potential protein-coding cis-NAT pairs, including 131 novel pairs that were not present in TAIR10 gene models. In pollen, 872 possibly functional pairs were identified. 72 and 56 pairs were potentially functional in sperm and vegetative cells, respectively. sRNAs were detected at 794 genes, belonging to 739 pairs. Conclusion: These potential candidates in sperm and the vegetative cell are tools for understanding gene expression mechanisms in pollen.


2022 ◽  
Author(s):  
Michael Batie ◽  
Julianty Frost ◽  
Dilem Shakir ◽  
Sonia Rocha

Reduced oxygen availability (hypoxia) can act as a signalling cue in physiological processes such as development, but also in pathological conditions such as cancer or ischaemic disease. As such, understanding how cells and organisms respond to hypoxia is of great importance. The family of transcription factors called Hypoxia Inducible Factors (HIFs) coordinate a transcriptional programme required for survival and adaptation to hypoxia. The effects of hypoxia and HIF on the chromatin accessibility landscape are still unclear. Here, using genome wide mapping of chromatin accessibility via ATAC-seq, we find hypoxia induces loci specific changes in chromatin accessibility enriched at hypoxia transcriptionally responsive genes. These changes are predominantly HIF dependent, reversible upon reoxygenation and partially mimicked by chemical HIF stabilisation independent of molecular dioxygenase inhibition. This work demonstrates that indeed, HIF stabilisation is necessary and sufficient to alter chromatin accessibility in hypoxia, with implications for our understanding of gene expression regulation by hypoxia and HIF.


2019 ◽  
Vol 47 (20) ◽  
pp. 10580-10596 ◽  
Author(s):  
Karl J V Nordström ◽  
Florian Schmidt ◽  
Nina Gasparoni ◽  
Abdulrahman Salhab ◽  
Gilles Gasparoni ◽  
...  

Abstract Chromatin accessibility maps are important for the functional interpretation of the genome. Here, we systematically analysed assay specific differences between DNase I-seq, ATAC-seq and NOMe-seq in a side by side experimental and bioinformatic setup. We observe that most prominent nucleosome depleted regions (NDRs, e.g. in promoters) are roboustly called by all three or at least two assays. However, we also find a high proportion of assay specific NDRs that are often ‘called’ by only one of the assays. We show evidence that these assay specific NDRs are indeed genuine open chromatin sites and contribute important information for accurate gene expression prediction. While technically ATAC-seq and DNase I-seq provide a superb high NDR calling rate for relatively low sequencing costs in comparison to NOMe-seq, NOMe-seq singles out for its genome-wide coverage allowing to not only detect NDRs but also endogenous DNA methylation and as we show here genome wide segmentation into heterochromatic B domains and local phasing of nucleosomes outside of NDRs. In summary, our comparisons strongly suggest to consider assay specific differences for the experimental design and for generalized and comparative functional interpretations.


Author(s):  
Jinchao Li ◽  
David Witonsky ◽  
Emily Sprague ◽  
Dereck Alleyne ◽  
Margaret C Bielski ◽  
...  

Background & Aims: Active vitamin D, 1α,25(OH)2D3, is a nuclear hormone with roles in colonic homeostasis and carcinogenesis; yet, mechanisms underlying these effects are incompletely understood. Organoids are an ideal system to study genomic and epigenomic host-environment interactions. We utilize colonic organoids to measure 1α,25(OH)2D3 responses on genome-wide gene expression and chromatin accessibility over time. Methods: Human colonic organoids were treated in triplicate with 100nM 1α,25(OH)2D3 or vehicle control for 4 and 18 hours (h) for chromatin accessibility, and 6 and 24h for gene expression. ATAC- and RNA-sequencing were performed. Differentially accessible peaks were analyzed using DiffBind and EdgeR; differentially expressed genes were analyzed using DESeq2. Motif enrichment was determined using HOMER. Results: At 6h and 24h, 2870 and 2721 differentially expressed genes, respectively (false discovery rate, FDR<5%) were identified with overall stronger responses with 1α,25(OH)2D3. Vitamin D treatment led to stronger chromatin accessibility especially at 4h. The vitamin D receptor (VDR) motif was strongly enriched among accessible chromatin peaks with 1α,25(OH)2D3 treatment accounting for 30.5% and 11% of target sequences at 4h and 18h, respectively (FDR<1%). Genes such as CYP24A1, FGF19, MYC, FOS and TGFBR2 showed significant transcriptional and chromatin accessibility responses to 1α,25(OH)2D3 treatment with accessible chromatin located distant from promoters for some gene regions. Conclusions: Assessment of chromatin accessibility and transcriptional responses to 1α,25(OH)2D3 yielded new observations about vitamin D genome-wide effects in the colon facilitated by application of human colonic organoids. This framework can be applied to study host-environment interactions between individuals and populations in future.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1684-1684
Author(s):  
Marta Lionetti ◽  
Luca Agnelli ◽  
Laura Mosca ◽  
Katia Todoerti ◽  
Domenica Ronchetti ◽  
...  

Abstract The recent discovery of microRNAs (miRNAs), small noncoding RNAs involved in the regulation of cell cycle, survival, and differentiation programmes, has added a further level of complexity to normal and cancer cell biology. Loss or amplification of miRNA genes by broad cytogenetic abnormalities or minute molecular aberrations has been observed in a variety of human malignancies, with the consequent altered expression of these regulatory genes. Additionally, approximately one third of miRNAs are located within the intronic regions of coding transcription units, and recent evidence indicates that the expression of these miRNAs largely coincides with the transcription of the corresponding host genes. To date, no evidence of deregulated miRNA expression has been reported in multiple myeloma (MM). To provide insights into miRNA biology in MM, we performed an integrative analysis of genome-wide, gene expression and miRNA expression profilings in a panel of 16 human myeloma cell lines (HMCLs). Global miRNA and mRNA expression data were generated on Agilent miRNA microarrays (representing 470 human mature miRNAs) and GeneChip® HG-U133A arrays, respectively, and both quantile-normalized. Genome-wide profiling data were generated on GeneChip® Human Mapping 250K NspI arrays and copy number (CN) values were inferred using the circulary binary segmentation (DNAcopy R Bioconductor package). To measure the correlation between the expression levels of each miRNA and the corresponding CN value or host gene expression, conventional non-parametric analyses were performed (Kendall’s tau and Wilcoxon rank-sum tests). As regards miRNA gene CN, the most frequent alteration identified was represented by gain/amplification (for all miRNA genes investigated, an increased CN was present in at least 3 HMCLs, with an average frequency of 58%), followed by loss (5%) and biallelic deletion (0.3%). Our analysis revealed that 14 different miRNA transcripts (miR-15a, miR-19a, miR-21, miR-22, miR-30d, miR-99b, miR-130b, miR-132, miR-140, miR-185, miR-339, miR-491, miR-503, miR-768-3p) had concordant levels with the inferred CN value of the corresponding miRNA gene. Notably, the identified miRNAs mapped to different genomic regions, some of which are involved in recurrent CN alterations in MM, such as 8q24, 19q13.33, or chromosome arms 13q, 16q, 17p, 17q, 22q, and for some of the miRNAs a role in other types of cancer has already been suggested. As regards intragenic miRNAs, 187 miRNA/host gene pairs were obtained after localizing miRNAs within the absolute 5′ and 3′ regions of genes represented on the HG-U133A arrays; 25 of these showed a significant correlation between miRNA and mRNA levels. Among the most correlated miRNA/hostgene pairs we identified miR-152/COPZ2, miR-342-3p/EVL, miR-335/MEST, miR-25 and miR-106b/MCM7. For some of the identified pairs, miRNA expression levels were validated by means of Q-RT-PCR. In conclusion, we showed that miRNA expression in HMCLs could be affected by the presence of genomic lesions or may correlate with host-gene modulation, suggesting a possible role in the molecular pathogenesis of MM. Our integrative approach represents the basis for further investigations, also in primary tumors, aimed at functionally characterizing specific miRNAs in MM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3892-3892
Author(s):  
Timothy Best ◽  
Andrew D Skol ◽  
Eric Gamazon ◽  
Kenan Onel

Abstract Abstract 3892 Survivors of Hodgkin lymphoma (HL) are susceptible to radiation-induced second malignant neoplasms (SMNs). In a genome-wide association study (GWAS) of patients treated for HL who did or did not develop SMNs, we identified and validated two SMN-associated single nucleotide polymorphisms (SNPs) at 6q21, intergenic between PRDM1 and ATG5 [rs4946728: P = 1.04×10-9, OR = 3.21 (95% CI = 2.37–6.42), and rs1040411: P = 4.24×10-8, OR = 2.43 (95% CI = 1.76–3.34)]. Recently, it was demonstrated that disease-associated SNPs are more likely to be expression quantitative trait loci (eQTLs), SNPs that regulate gene expression, than are randomly chosen SNPs matched for their population allele frequencies. Indeed, we found that the 1000 SNPs most associated with SMNs are significantly enriched for eQTLs (P = 0.01). Exploring the processes regulated by SMN-associated SNPs can inform the mechanism by which SMNs result in patients treated with radiation therapy. As an initial investigation of the effect of these SNPs on gene expression, we studied the effect of the validated 6q21 haplotype (comprised of rs4946728 and rs1040411) on global gene expression in HapMap lymphoblastoid cell lines (LCLs). Gene set enrichment analysis of genes differentially expressed (log2>0.05) between cell lines carrying either the risk or protective haplotype revealed that carriage of the risk-associated haplotype was associated with increased expression of transmembrane proteins (enrichment P = 2.1×10-13) and immune response proteins (enrichment P = 1.2×10-6). Because the 6q21 haplotype is in close physical proximity to ATG5 and PRDM1, we investigated its functional consequence on expression of these genes. We discovered the risk-associated haplotype was significantly associated with lower levels of PRDM1 mRNA (P = 0.04) but not ATG5 mRNA. As exposure to radiation is the primary etiologic factor for SMNs, we assessed the effect of the risk haplotype on protein levels of PRDM1 and ATG5 in six LCLs (three with the risk haplotype and three with the protective haplotype) following 10Gy of gamma irradiation (IR). PRDM1 protein levels were significantly lower in LCLs carrying the risk-associated haplotype in the absence of IR. In all lines, PRDM1 levels increased following radiation exposure, but this effect was significantly attenuated in presence of the risk haplotype. In sum, these data suggest that SNPs associated with SMNs following HL are enriched for SNPs that regulate gene expression. We demonstrate that the validated risk alleles at 6q21 are associated with differences in PRDM1 mRNA and protein levels and response to radiation. These observations suggest a model in which PRDM1 may be a key regulator of the radiation-response that protects against the emergence of SMNs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document