Genomic and epigenomic active vitamin Dresponses in human colonic organoids

Author(s):  
Jinchao Li ◽  
David Witonsky ◽  
Emily Sprague ◽  
Dereck Alleyne ◽  
Margaret C Bielski ◽  
...  

Background & Aims: Active vitamin D, 1α,25(OH)2D3, is a nuclear hormone with roles in colonic homeostasis and carcinogenesis; yet, mechanisms underlying these effects are incompletely understood. Organoids are an ideal system to study genomic and epigenomic host-environment interactions. We utilize colonic organoids to measure 1α,25(OH)2D3 responses on genome-wide gene expression and chromatin accessibility over time. Methods: Human colonic organoids were treated in triplicate with 100nM 1α,25(OH)2D3 or vehicle control for 4 and 18 hours (h) for chromatin accessibility, and 6 and 24h for gene expression. ATAC- and RNA-sequencing were performed. Differentially accessible peaks were analyzed using DiffBind and EdgeR; differentially expressed genes were analyzed using DESeq2. Motif enrichment was determined using HOMER. Results: At 6h and 24h, 2870 and 2721 differentially expressed genes, respectively (false discovery rate, FDR<5%) were identified with overall stronger responses with 1α,25(OH)2D3. Vitamin D treatment led to stronger chromatin accessibility especially at 4h. The vitamin D receptor (VDR) motif was strongly enriched among accessible chromatin peaks with 1α,25(OH)2D3 treatment accounting for 30.5% and 11% of target sequences at 4h and 18h, respectively (FDR<1%). Genes such as CYP24A1, FGF19, MYC, FOS and TGFBR2 showed significant transcriptional and chromatin accessibility responses to 1α,25(OH)2D3 treatment with accessible chromatin located distant from promoters for some gene regions. Conclusions: Assessment of chromatin accessibility and transcriptional responses to 1α,25(OH)2D3 yielded new observations about vitamin D genome-wide effects in the colon facilitated by application of human colonic organoids. This framework can be applied to study host-environment interactions between individuals and populations in future.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 435-435
Author(s):  
Matko Kalac ◽  
Enrica Marchi ◽  
Luigi Scotto ◽  
Jennifer Amengual ◽  
Venkatraman Seshan ◽  
...  

Abstract Abstract 435 Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoid malignancy, representing approximately 30–40% of all lymphomas. While significant progress has been made in treating this disease over the past decade, it is still regarded as a heterogeneous disease which, after being classified as relapsed or refractory, is fatal in about one-third of patients. Histone deacetylase inhibitors (HDACI) are presently approved for the treatment of relapsed or refractory cutaneous T- cell lymphomas (CTCL), and have marked activity in peripheral T-cell lymphomas (PTCL), though their effectiveness in DLBCL is less established. DNA methyltransferases (DNMTs) are known to recruit and cooperate with histone deacetylases to induce gene silencing. Combinations of drugs affecting these pathways have emerged as active and important, mostly in myeloid leukemias. We hypothesized that the combination of HDACI and DNMT inhibitors (DNMTI) in DLBCL may be active only in combination and not as single agents. We examined the interaction between a broad range of HDACI including vorinostat, depsipeptide, panobinostat and DNMTI using in vivo and in vitro models of DLBCLs, clearly confirming that these agents are in fact synergistic with decitabine. Synergy was measured by relative risk ratio (RRR) and the values obtained were as low as 0.01, representing very strong synergy. This combination of drugs, specifically panobinostat and decitabine, was also shown to be strongly synergistic in a murine xenograft model of DLBCL. In addition, we analyzed the molecular basis for this synergistic effect by evaluating the global gene expression and methylation using microarrays on the cells treated with the single agents and combination in DLBCL. Three DLBCL lines (OCI-Ly1, OCI-Ly10 and Su-DHL6) were treated with decitabine alone (2.5 μ M), panobinostat alone (2.5 nM) or their combination for 48h hours. DNA and RNA from untreated and treated cells were used for genome wide methylation analysis through Illumina Humanmethyation27 platform and gene expression profiling analysis with Illumina HumanHT-12 v3 Expression arrays. 3D principal component analysis clearly clustered the samples treated with panobinostat and combination therapy together and at greater distances from untreated samples and samples treated by decitabine alone. Therefore, the contribution to the gene expression phenotype of the combination was greater from the HDACI than with DNMTI. Consistent with this observation, the top network of genes differentially expressed (p<0.05) by panobinostat involved critical transcription factors like GATA1, GATA4, SMAD and DNMT3A. Additionally, network-functional analysis of genes perturbed by the combination treatments enriched for critical pathways involved in cell death, cell development and cellular proliferation. Surprisingly, differentially expressed genes and networks identified by each of the treatment conditions and by combination therapy were unique with few overlapping genes as shown in Venn diagram in Figure 1a. Genome wide methylation analysis produced similar results with greater contribution to global methylation changes in cells treated by the combination therapy and decitabine as compared to HDACI. Again, methylation status of a distinct set of genes was altered by combination therapy as compared to the individual drugs (Figure 1b). Correlation between genome wide methylation analysis and gene expression profiling identified 16 overlapping genes in the samples treated by the combination of panobinostat and decitabine including known tumor suppressor genes like VHL, DIRAS3 and WT1. Taken together, integrative genomic analysis has provided insights into the relative contribution of independent epigenetic therapies to the combination phenotype. These findings may provide important leads in identifying unique biomarkers of response specific to the combination of panobinostat and decitabine in DLBCL. Figure 1. Venn diagrams of the overlap in differentially expressed genes (p<0.05) between the three treatment groups: a) Panobinostat (LBH), Decitabine (DAC) and their combination (L D) affect the expression of distinct sets of genes in DLBCL cell lines; b) LBH, DAC and their combination affect the methylation status of distinct sets of genes in DLBCL cell lines. Figure 1. Venn diagrams of the overlap in differentially expressed genes (p<0.05) between the three treatment groups: a) Panobinostat (LBH), Decitabine (DAC) and their combination (L D) affect the expression of distinct sets of genes in DLBCL cell lines; b) LBH, DAC and their combination affect the methylation status of distinct sets of genes in DLBCL cell lines. Disclosure: O'Connor: Millennium Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2020 ◽  
Author(s):  
Pierre-Olivier Estève ◽  
Udayakumar S. Vishnu ◽  
Hang Gyeong Chin ◽  
Sriharsa Pradhan

AbstractChromatin accessibility is a predictor of gene expression, cell division and cell type specificity. NicE-viewSeq (Nicking Enzyme assisted viewing and Sequencing) allows accessible chromatin visualization and sequencing with overall lower mitochondrial DNA and duplicated sequences interference relative to ATAC-see. Using NicE-viewSeq, we interrogated the accessibility of chromatin in a cell cycle (G1, S and G2/M) - specific manner using mammalian cells. Despite DNA replication and subsequent condensation of chromatin to chromosomes, chromatin accessibility remained generally preserved with minimal subtle alterations. Genome-wide alteration of chromatin accessibility within TSS and enhancer elements gradually decreased as cells progressed from G1 to G2M, with distinct differential accessibility near consensus transcription factors sites. Inhibition of histone deacetylases promoted accessible chromatin within gene bodies, correlating with apoptotic gene expression. In addition, reduced chromatin accessibility for the MYC oncogene pathway correlated with down regulation of pertinent genes. Surprisingly, repetitive RNA loci expression remained unaltered following histone acetylation-mediated increased accessibility. Therefore, we suggest that subtle changes in chromatin accessibility is a prerequisite during cell cycle and histone deacetylase inhibitor mediated therapeutics.


2020 ◽  
Author(s):  
Valeriia Dotsenko ◽  
Mikko Oittinen ◽  
Juha Taavela ◽  
Alina Popp ◽  
Markku Peräaho ◽  
...  

AbstractBackground & AimsGluten challenge studies are instrumental in understanding the pathophysiology of celiac disease. Our aims in this study were to reveal early gluten-induced transcriptomic changes in duodenal biopsies and to find tools for clinics.MethodsDuodenal biopsies were collected from 15 celiac disease patients on a strict long-term gluten-free diet (GFD) prior to and post a gluten challenge (PGC) and from 6 healthy control individuals (DC). Biopsy RNA was subjected to genome-wide 3’ RNA-Seq. Sequencing data was used to determine the differences between the three groups and was compared to sequencing data from the public repositories. The biopsies underwent morphometric analyses.ResultsIn DC vs. GFD group comparisons, 167 differentially expressed genes were identified with 117 genes downregulated and 50 genes upregulated. In PGC vs. GFD group comparisons, 417 differentially expressed genes were identified with 195 genes downregulated and 222 genes upregulated. Celiac disease patients on a GFD were not “healthy”. In particular, genes encoding proteins for transporting small molecules were expressed less. In addition to the activation of immune response genes, a gluten challenge induced hyperactive intestinal wnt-signaling and consequent immature crypt gene expression resulting in less differentiated epithelium. Biopsy gene expression in response to a gluten challenge correlated with the extent of the histological damage. Regression models using only four gene transcripts described 97.2% of the mucosal morphology and 98.0% of the inflammatory changes observed.ConclusionsOur gluten challenge trial design provided an opportunity to study the transition from health to disease. The results show that even on a strict GFD, despite being deemed healthy, patients reveal patterns of ongoing disease. Here, a transcriptomic regression model estimating the extent of gluten-induced duodenal mucosal injury is presented.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Kelvin Lee ◽  
Tuomo Polvikoski ◽  
Daniel Birchall ◽  
Mauro Santibanez-Koref ◽  
Alexander D Mendelow ◽  
...  

The molecular mechanisms leading to plaque rupture are poorly understood. Genome-wide gene expression studies may reveal novel causal molecular pathways. METHODS: Snap-frozen human atherosclerotic plaques removed at carotid endarterectomy were designated as stable or ruptured using stringent clinical, radiological and histopathological criteria. Accurate gene expression profiling of macrophages in 5 ruptured and 6 stable plaques was conducted by employing Laser Micro-Dissection to specifically isolate this cell type from the plaques. High quality RNA was amplified and hybridised to the genome-wide Affymetrix U133plus2 microarray. RESULTS: Exploratory clustering by Principal Components Analysis showed the data to cluster into 2 distinct groups- stable and ruptured. We identified 889 statistically significant differentially expressed genes between the two groups (Fig.1 ). Genes involved in lipid processing, signalling, apoptosis, immune response and extracellular matrix were found to play a role in plaque rupture. Pathway analysis identified the Adipocytokine Signalling Pathway to be the most significantly represented cell signalling pathway (p<0.0006). The microarray findings were technically validated by real-time qPCR (Pearson Correlation R=0.94) and biologically cross-validated on a larger number of samples successfully (n=25). Immunocytochemical staining confirmed the differential Leptin expression in macrophages of ruptured and stable plaques. CONCLUSION: The involvement of Leptin and the Adipocytokine Signalling Pathway in macrophages in plaque rupture has been implicated here for the first time and may be a potential therapeutic target. Figure 1. Heatmap of 889 statistically significant differentially expressed genes (red for high expression, green for low expression) with the top 20 most highly expressed genes in ruptured and stable groups listed.


Cephalalgia ◽  
2017 ◽  
Vol 38 (2) ◽  
pp. 292-303 ◽  
Author(s):  
Zachary F Gerring ◽  
Joseph E Powell ◽  
Grant W Montgomery ◽  
Dale R Nyholt

Background Typical migraine is a frequent, debilitating and painful headache disorder with an estimated heritability of about 50%. Although genome-wide association (GWA) studies have identified over 40 single nucleotide polymorphisms associated with migraine, further research is required to determine their biological role in migraine susceptibility. Therefore, we performed a study of genome-wide gene expression in a large sample of 83 migraine cases and 83 non-migraine controls to determine whether altered expression levels of genes and pathways could provide insights into the biological mechanisms underlying migraine. Methods We assessed whole blood gene expression data for 17994 expression probes measured using IlluminaHT-12 v4.0 BeadChips. Differential expression was assessed using multivariable logistic regression. Gene expression probes with a nominal p value < 0.05 were classified as differentially expressed. We identified modules of co-regulated genes and tested them for enrichment of differentially expressed genes and functional pathways using a false discovery rate <0.05. Results Association analyses between migraine and probe expression levels, adjusted for age and gender, revealed an excess of small p values, but there was no significant single-probe association after correction for multiple testing. Network analysis of pooled expression data identified 10 modules of co-expressed genes. One module harboured a significant number of differentially expressed genes and was strongly enriched with immune-inflammatory pathways, including multiple pathways expressed in microglial cells. Conclusions These data suggest immune-inflammatory pathways play an important role in the pathogenesis, manifestation, and/or progression of migraine in some patients. Furthermore, gene-expression associations are measurable in whole blood, suggesting the analysis of blood gene expression can inform our understanding of the biological mechanisms underlying migraine, identify biomarkers, and facilitate the discovery of novel pathways and thus determine new targets for drug therapy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rowan AlEjielat ◽  
Anas Khaleel ◽  
Amneh H. Tarkhan

Abstract Background Ankylosing spondylitis (AS) is a rare inflammatory disorder affecting the spinal joints. Although we know some of the genetic factors that are associated with the disease, the molecular basis of this illness has not yet been fully elucidated, and the genes involved in AS pathogenesis have not been entirely identified. The current study aimed at constructing a gene network that may serve as an AS gene signature and biomarker, both of which will help in disease diagnosis and the identification of therapeutic targets. Previously published gene expression profiles of 16 AS patients and 16 gender- and age-matched controls that were profiled on the Illumina HumanHT-12 V3.0 Expression BeadChip platform were mined. Patients were Portuguese, 21 to 64 years old, were diagnosed based on the modified New York criteria, and had Bath Ankylosing Spondylitis Disease Activity Index scores > 4 and Bath Ankylosing Spondylitis Functional Index scores > 4. All patients were receiving only NSAIDs and/or sulphasalazine. Functional enrichment and pathway analysis were performed to create an interaction network of differentially expressed genes. Results ITM2A, ICOS, VSIG10L, CD59, TRAC, and CTLA-4 were among the significantly differentially expressed genes in AS, but the most significantly downregulated genes were the HLA-DRB6, HLA-DRB5, HLA-DRB4, HLA-DRB3, HLA-DRB1, HLA-DQB1, ITM2A, and CTLA-4 genes. The genes in this study were mostly associated with the regulation of the immune system processes, parts of cell membrane, and signaling related to T cell receptor and antigen receptor, in addition to some overlaps related to the IL2 STAT signaling, as well as the androgen response. The most significantly over-represented pathways in the data set were associated with the “RUNX1 and FOXP3 which control the development of regulatory T lymphocytes (Tregs)” and the “GABA receptor activation” pathways. Conclusions Comprehensive gene analysis of differentially expressed genes in AS reveals a significant gene network that is involved in a multitude of important immune and inflammatory pathways. These pathways and networks might serve as biomarkers for AS and can potentially help in diagnosing the disease and identifying future targets for treatment.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hui Li ◽  
Jing-An Chen ◽  
Qian-Zhi Ding ◽  
Guan-Yi Lu ◽  
Ning Wu ◽  
...  

Abstract Background Methamphetamine (METH) is one of the most widely abused illicit substances worldwide; unfortunately, its addiction mechanism remains unclear. Based on accumulating evidence, changes in gene expression and chromatin modifications might be related to the persistent effects of METH on the brain. In the present study, we took advantage of METH-induced behavioral sensitization as an animal model that reflects some aspects of drug addiction and examined the changes in gene expression and histone acetylation in the prefrontal cortex (PFC) of adult rats. Methods We conducted mRNA microarray and chromatin immunoprecipitation (ChIP) coupled to DNA microarray (ChIP-chip) analyses to screen and identify changes in transcript levels and histone acetylation patterns. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were performed to analyze the differentially expressed genes. We then further identified alterations in ANP32A (acidic leucine-rich nuclear phosphoprotein-32A) and POU3F2 (POU domain, class 3, transcription factor 2) using qPCR and ChIP-PCR assays. Results In the rat model of METH-induced behavioral sensitization, METH challenge caused 275 differentially expressed genes and a number of hyperacetylated genes (821 genes with H3 acetylation and 10 genes with H4 acetylation). Based on mRNA microarray and GO and KEGG enrichment analyses, 24 genes may be involved in METH-induced behavioral sensitization, and 7 genes were confirmed using qPCR. We further examined the alterations in the levels of the ANP32A and POU3F2 transcripts and histone acetylation at different periods of METH-induced behavioral sensitization. H4 hyperacetylation contributed to the increased levels of ANP32A mRNA and H3/H4 hyperacetylation contributed to the increased levels of POU3F2 mRNA induced by METH challenge-induced behavioral sensitization, but not by acute METH exposure. Conclusions The present results revealed alterations in transcription and histone acetylation in the rat PFC by METH exposure and provided evidence that modifications of histone acetylation contributed to the alterations in gene expression caused by METH-induced behavioral sensitization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Constantinos G. Broustas ◽  
Axel J. Duval ◽  
Sally A. Amundson

AbstractAs a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.


Sign in / Sign up

Export Citation Format

Share Document