scholarly journals Using a Quadruplet Codon to Expand the Genetic Code of an Animal

2021 ◽  
Author(s):  
Zhiyan Xi ◽  
Lloyd Davis ◽  
Kieran Baxter ◽  
Ailish Tynan ◽  
Angeliki Goutou ◽  
...  

Genetic code expansion in multicellular organisms is currently limited to the use of repurposed amber stop codons. Here we introduce a system for the use of quadruplet codons to direct incorporation of non-canonical amino acids in vivo in an animal, the nematode worm Caenorhabditis elegans. We develop hybrid pyrrolysyl tRNA variants to incorporate non-canonical amino acids in response to the quadruplet codon UAGA. We demonstrate the efficiency of the quadruplet decoding system by incorporating photocaged amino acids into two proteins widely used as genetic tools. We use photocaged lysine to express photocaged Cre recombinase for the optical control of gene expression and photocaged cysteine to express photo-activatable caspase for light inducible cell ablation. Our approach will facilitate the routine adoption of quadruplet decoding for genetic code expansion in eukaryotic cells and multicellular organisms.

Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


2022 ◽  
Vol 23 (2) ◽  
pp. 938
Author(s):  
Olubodun Michael Lateef ◽  
Michael Olawale Akintubosun ◽  
Olamide Tosin Olaoba ◽  
Sunday Ocholi Samson ◽  
Malgorzata Adamczyk

The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.


2019 ◽  
Vol 17 (25) ◽  
pp. 6127-6130
Author(s):  
Hui Miao ◽  
Chenguang Yu ◽  
Anzhi Yao ◽  
Weimin Xuan

Genetic code expansion depends on the directed evolution of aaRS to recognize non-canonical amino acids. Herein, we reported a function-based method that enables rapidly evolving aaRS for acylated lysine derivatives.


Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 58 ◽  
Author(s):  
Pol Arranz-Gibert ◽  
Jaymin R. Patel ◽  
Farren J. Isaacs

The genetic code defines how information in the genome is translated into protein. Aside from a handful of isolated exceptions, this code is universal. Researchers have developed techniques to artificially expand the genetic code, repurposing codons and translational machinery to incorporate nonstandard amino acids (nsAAs) into proteins. A key challenge for robust genetic code expansion is orthogonality; the engineered machinery used to introduce nsAAs into proteins must co-exist with native translation and gene expression without cross-reactivity or pleiotropy. The issue of orthogonality manifests at several levels, including those of codons, ribosomes, aminoacyl-tRNA synthetases, tRNAs, and elongation factors. In this concept paper, we describe advances in genome recoding, translational engineering and associated challenges rooted in establishing orthogonality needed to expand the genetic code.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lloyd Davis ◽  
Inja Radman ◽  
Angeliki Goutou ◽  
Ailish Tynan ◽  
Kieran Baxter ◽  
...  

Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in C. elegans and use it to create a photo-activatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Takashi Kawakami ◽  
Hiroshi Murakami

The presence of a nonproteinogenic moiety in a nonstandard peptide often improves the biological properties of the peptide. Non-standard peptide libraries are therefore used to obtain valuable molecules for biological, therapeutic, and diagnostic applications. Highly diverse non-standard peptide libraries can be generated by chemically or enzymatically modifying standard peptide libraries synthesized by the ribosomal machinery, using posttranslational modifications. Alternatively, strategies for encoding non-proteinogenic amino acids into the genetic code have been developed for the direct ribosomal synthesis of non-standard peptide libraries. In the strategies for genetic code expansion, non-proteinogenic amino acids are assigned to the nonsense codons or 4-base codons in order to add these amino acids to the universal genetic code. In contrast, in the strategies for genetic code reprogramming, some proteinogenic amino acids are erased from the genetic code and non-proteinogenic amino acids are reassigned to the blank codons. Here, we discuss the generation of genetically encoded non-standard peptide libraries using these strategies and also review recent applications of these libraries to the selection of functional non-standard peptides.


2021 ◽  
Author(s):  
Jack M O'Shea ◽  
Angeliki Goutou ◽  
Cyrus Sethna ◽  
Christopher W Wood ◽  
Sebastian Greiss

Nanobodies are becoming increasingly popular as tools for manipulating and visualising proteins in vivo. The ability to control nanobody/antigen interactions using light could provide precise spatiotemporal control over protein function. We develop a general approach to engineer photo-activatable nanobodies using photocaged amino acids that are introduced into the target binding interface by genetic code expansion. Guided by computational alanine scanning and molecular-dynamics simulations, we tune nanobody/target binding affinity to eliminate binding before uncaging. Upon photo-activation, binding is restored. We use this approach to generate improved photocaged variants of two anti-GFP nanobodies. These variants exhibit photo-activatable binding triggered by illumination with 365nm light. We demonstrate that the photocaged nanobodies we have created are highly robust and function in a complex cellular environment. We apply them to control subcellular protein localisation in the nematode worm C. elegans. Our approach provides a rare example of computationally designed proteins being directly applied in living animals and demonstrates the importance of accounting for in vivo effects on protein-protein interactions.


2017 ◽  
Author(s):  
Drew S. Tack ◽  
Austin C. Cole ◽  
R. Shroff ◽  
B.R. Morrow ◽  
Andrew D. Ellington

AbstractEvolution has for the most part used the canonical 20 amino acids of the natural genetic code to construct proteins. While several theories regarding the evolution of the genetic code have been proposed, experimental exploration of these theories has largely been restricted to phylogenetic and computational modeling. The development of orthogonal translation systems has allowed noncanonical amino acids to be inserted at will into proteins. We have taken advantage of these advances to evolve bacteria to accommodate a 21 amino acid genetic code in which the amber codon ambiguously encodes either 3-nitro-L-tyrosine or stop. Such an ambiguous encoding strategy recapitulates numerous models for genetic code expansion, and we find that evolved lineages first accommodate the unnatural amino acid, and then begin to evolve on a neutral landscape where stop codons begin to appear within genes. The resultant lines represent transitional intermediates on the way to the fixation of a functional 21 amino acid code.


Sign in / Sign up

Export Citation Format

Share Document