scholarly journals Lowland plant migrations into alpine ecosystems amplify soil carbon loss under climate warming

2021 ◽  
Author(s):  
Tom W N Walker ◽  
Konstantin Gavazov ◽  
Thomas Guillaume ◽  
Thibault Lambert ◽  
Pierre Mariotte ◽  
...  

Climate warming is releasing carbon from soils around the world1–3, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems4–9. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown10. Here we used alpine grasslands as a model system to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences short–term soil carbon storage under warming. We found that warming (< 1 year) led to negligible alpine soil carbon loss, but its effects became significant and 52% ± 31% (mean ± 95% CIs) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that soil carbon loss likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration and CO2 release. Our findings suggest that warming–induced range expansions of herbaceous plants may yield a rapid positive climate feedback in this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.

2018 ◽  
Vol 115 (15) ◽  
pp. 3882-3887 ◽  
Author(s):  
A. David McGuire ◽  
David M. Lawrence ◽  
Charles Koven ◽  
Joy S. Clein ◽  
Eleanor Burke ◽  
...  

We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.


2009 ◽  
Vol 97 (5) ◽  
pp. 876-885 ◽  
Author(s):  
Katja Klumpp ◽  
Sébastien Fontaine ◽  
Eléonore Attard ◽  
Xavier Le Roux ◽  
Gerd Gleixner ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 880
Author(s):  
Andrey Sirin ◽  
Alexander Maslov ◽  
Dmitry Makarov ◽  
Yakov Gulbe ◽  
Hans Joosten

Forest-peat fires are notable for their difficulty in estimating carbon losses. Combined carbon losses from tree biomass and peat soil were estimated at an 8 ha forest-peat fire in the Moscow region after catastrophic fires in 2010. The loss of tree biomass carbon was assessed by reconstructing forest stand structure using the classification of pre-fire high-resolution satellite imagery and after-fire ground survey of the same forest classes in adjacent areas. Soil carbon loss was assessed by using the root collars of stumps to reconstruct the pre-fire soil surface and interpolating the peat characteristics of adjacent non-burned areas. The mean (median) depth of peat losses across the burned area was 15 ± 8 (14) cm, varying from 13 ± 5 (11) to 20 ± 9 (19). Loss of soil carbon was 9.22 ± 3.75–11.0 ± 4.96 (mean) and 8.0–11.0 kg m−2 (median); values exceeding 100 tC ha−1 have also been found in other studies. The estimated soil carbon loss for the entire burned area, 98 (mean) and 92 (median) tC ha−1, significantly exceeds the carbon loss from live (tree) biomass, which averaged 58.8 tC ha−1. The loss of carbon in the forest-peat fire thus equals the release of nearly 400 (soil) and, including the biomass, almost 650 tCO2 ha−1 into the atmosphere, which illustrates the underestimated impact of boreal forest-peat fires on atmospheric gas concentrations and climate.


2021 ◽  
Author(s):  
Felipe Bastida ◽  
David J. Eldridge ◽  
Carlos García ◽  
G. Kenny Png ◽  
Richard D. Bardgett ◽  
...  

AbstractThe relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity–biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0121432 ◽  
Author(s):  
Emilie R. Kirk ◽  
Chris van Kessel ◽  
William R. Horwath ◽  
Bruce A. Linquist

2006 ◽  
Vol 25 (S1) ◽  
pp. 278-278
Author(s):  
Xinqing Lee ◽  
Daikuan Huang ◽  
Wei Jiang ◽  
Zhaodong Feng ◽  
Hongguang Cheng ◽  
...  

2017 ◽  
Author(s):  
Ting Liu ◽  
Liang Wang ◽  
Xiaojuan Feng ◽  
Jinbo Zhang ◽  
Tian Ma ◽  
...  

Abstract. Respiration and leaching are two main processes responsible for soil carbon loss. While the former has received considerable research attention, studies examining leaching processes are limited especially in semiarid grasslands due to low precipitation. Climate change may increase the extreme precipitation event (EPE) frequency in arid and semiarid regions, potentially enhancing soil carbon loss through leaching and respiration. Here we incubated soil columns of three typical grassland soils from Inner Mongolia and Qinghai-Tibetan Plateau and examined the effect of simulated EPEs on soil carbon loss through respiration and leaching. EPEs induced transient increase of soil respiration, equivalent to 32 % and 72 % of the net ecosystem productivity (NEP) in the temperate grasslands (Xilinhot and Keqi) and 7 % in the alpine grasslands (Gangcha). By comparison, leaching loss of soil carbon accounted for 290 %, 120 % and 15 % of NEP at the corresponding sites, respectively, with dissolved inorganic carbon (DIC) as the main form of carbon loss in the alkaline soils. Moreover, DIC loss increased with re-occuring EPEs in the soil with the highest pH due to increased dissolution of soil carbonates and elevated contribution of dissolved CO2 from organic carbon degradation (indicated by DIC-δ13C). These results highlight that leaching loss of soil carbon (particularly DIC) is important in the regional carbon budget of arid and semiarid grasslands. With a projected increase of EPEs under climate change, soil carbon leaching processes and its influencing factors warrant better understanding and should be incorporated into soil carbon models when estimating carbon balance in grassland ecosystems.


Sign in / Sign up

Export Citation Format

Share Document