scholarly journals Targeted Protein Acetylation in Cells Using Heterobifunctional Molecules

2021 ◽  
Author(s):  
Wesley Wei Wang ◽  
Li-Yun Chen ◽  
Jacob Wozniak ◽  
Appaso M Jadhav ◽  
Hayden Anderson ◽  
...  

Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often non-specific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-kB subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible, and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and will enable the exploration of targeted acetylation in basic biological and therapeutic contexts.

1989 ◽  
Vol 108 (1) ◽  
pp. 159-167 ◽  
Author(s):  
D J Kelvin ◽  
G Simard ◽  
H H Tai ◽  
T P Yamaguchi ◽  
J A Connolly

Cells of the nonfusing muscle cell line BC3H1 stop proliferating and express a family of muscle-specific proteins when the FBS concentration is reduced from 20 to 0.5% (Munson, R., K.L. Caldwell, and L. Glaser. 1982. J. Cell Biol. 92:350-356). Several growth factors have been shown to block differentiation in this cell line. To begin to investigate the potential role of G proteins in signal transducing pathways from these receptors, we have examined the effects of cholera toxin (CT) and pertussis toxin (PT) on proliferation and differentiation in BC3H1 cells. PT specifically ADP ribosylates a protein with an apparent molecular mass of 40 kD in BC3H1 cell membranes, whereas CT specifically ADP ribosylates three proteins of 35-43 kD. When added to exponentially growing cells in 20% FBS, CT and PT inhibited [3H]thymidine incorporation by up to 75% in a dose-dependent fashion. We found the synthesis of creatine kinase (CK) and skeletal muscle myosin light chain was reversibly induced in cells in 20% FBS treated with PT, but no increased synthesis was seen in cells treated with CT or in control cells; Northern analysis indicated this induction was at the level of mRNA. In cells shifted to 0.5% FBS, CT inhibited the normally induced synthesis of CK whereas PT potentiated it by approximately 50%. Forskolin also inhibited growth in 20% FBS and differentiation in 0.5% FBS medium in a dose-dependent fashion. both forskolin and CT elevated cAMP levels compared with control or PT-treated cells, suggesting that CT is blocking proliferation and differentiation by elevating cAMP levels. These results establish that a PT-sensitive pathway is involved in regulating proliferation and differentiation in BC3H1 cells, and we postulate that PT functions by ADP ribosylating a G protein that transduces signals from growth factor receptors in these cells.


1989 ◽  
Vol 62 (04) ◽  
pp. 1078-1082 ◽  
Author(s):  
Burt Adelman ◽  
Patricia Ouynn

SummaryThis report describes the binding of plasminogen to fibrinogen adsorbed onto polystyrene wells. Binding was determined by enzyme linked immunosorbent assay. Both glu- and lys-plasminogen bound to immobilized fibrinogen in a dose-dependent fashion. However, more lys- than glu-plasminogen bound when equal concentrations of either were added to immobilized fibrinogen. Plasminogen binding was inhibited by epsilon aminocaproic acid indicating that binding was mediated via lysine-binding regions of plasminogen. Soluble fibrinogen added in excess of immobilized fibrinogen did not compete for plasminogen binding but fibrinogen fragments produced by plasmin digestion of fibrinogen did. Treatment of immobilized fibrinogen with thrombin caused a small but significant (p <0.01) increase in plasminogen binding. These studies demonstrate that immobilized fibrinogen binds both glu- and lys-plasminogen and that binding is mediated via lysine-binding regions. These interactions may facilitate plasminogen binding to fibrinogen adsorbed on to surfaces and to cells such as platelets which bind fibrinogen.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii106-ii106
Author(s):  
Bryan Iorgulescu ◽  
Prafulla Gokhale ◽  
Maria Speranza ◽  
Benjamin Eschle ◽  
Michael Poitras ◽  
...  

Abstract BACKGROUND Dexamethasone, a uniquely potent corticosteroid, is frequently administered to brain tumor patients to decrease tumor-associated edema, but limited data exist describing how dexamethasone affects the immune system systemically and intratumorally in glioblastoma patients – particularly in the context of immunotherapy. METHODS We evaluated the dose-dependent effects of dexamethasone when administered with anti-PD-1 and/or radiotherapy in immunocompetent C57BL/6 mice with syngeneic GL261 or CT-2A glioblastoma tumors, including analyses of intracranial tumors, draining lymph nodes, and spleen. Clinically, the effect of dexamethasone on survival was additionally evaluated in 181 consecutive IDH-wildtype glioblastoma patients treated with anti-PD-(L)1, with adjustment for relevant prognostic factors. RESULTS Despite the inherent responsiveness of GL261 to immune checkpoint blockade, concurrent dexamethasone administration with anti-PD-1 therapy decreased survival in a dose-dependent fashion and decreased survival following anti-PD-1 plus radiotherapy in both GL261 and immunoresistant CT-2A models. Dexamethasone quantitatively decreased T lymphocytes by reducing the proliferation while increasing apoptosis. Dexamethasone also decreased lymphocyte functional capacity. Myeloid and NK cell populations were also generally reduced. Thus, dexamethasone negatively affects both the adaptive and innate immune responses. As a clinical correlate, a retrospective analysis of 181 consecutive IDH-wildtype glioblastoma patients treated with PD-(L)1 blockade revealed worse survival among those on baseline dexamethasone. Upon multivariable adjustment with relevant prognostic factors, baseline dexamethasone use – regardless of dose – was the strongest predictor of poor survival (reference no dexamethasone; &lt; 2mg HR 2.28, 95%CI=1.41–3.68, p=0.001; ≥2mg HR 1.97, 95%CI=1.27–3.07, p=0.003). CONCLUSIONS Our preclinical and clinical data indicate that concurrent dexamethasone therapy may be detrimental to immunotherapeutic approaches for glioblastoma patients. Our preclinical analyses also suggest that dexamethasone’s detrimental effects are dose-dependent, suggesting that the lowest possible dose should be used for patients when dexamethasone use is unavoidable. Careful evaluation of dexamethasone use is warranted for neuro-oncology patients undergoing immunotherapy clinical trials.


2004 ◽  
Vol 181 (3) ◽  
pp. 477-492 ◽  
Author(s):  
AA Fouladi Nashta ◽  
CV Andreu ◽  
N Nijjar ◽  
JK Heath ◽  
SJ Kimber

Decidualisation of uterine stromal cells is a prerequisite for implantation of the embryo in mice. Here we have used an in vitro culture system in which stromal cells decidualise as indicated by a number of markers, including an increase in alkaline phosphatase (ALP) activity. The latter was used as a quantitative marker of decidualisation in the presence of low (2%) fetal calf serum. Prostaglandin E(2) (PGE(2)), which is known to induce decidualisation, increased ALP activity, and this effect was blocked in a dose-dependent manner by indomethacin. Leukemia inhibitory factor (LIF) was then examined, but it had no effect on PGE(2) secretion. However, LIF suppressed ALP activity in a dose-dependent manner in the presence of 2% serum, while an inhibitor of LIF that competes for binding to its receptor reversed the effect of LIF and increased ALP activity above the control level. In serum-free cultures, stromal cells differentiated rapidly, and no differences were observed between LIF-treated and untreated cultures. Stromal cells produce LIF during in vitro culture, and this peaked at 48 h. Freshly collected stromal cells from both day-2 and -4 pregnant mice expressed mRNA for the LIF receptor, and the transcript level was higher in cells isolated on day 4. However, no differences were observed in the relative levels of transcripts in cells from day 2 and day 4 after culture, nor were there differences between the LIF-treated cultures and controls. Therefore, in this study, we have shown that LIF suppresses decidualisation of murine uterine stromal cells in the presence of serum, this is not due to the regulation of PGE(2) secretion by stromal cells.


1996 ◽  
Vol 270 (6) ◽  
pp. G897-G901 ◽  
Author(s):  
J. DelValle ◽  
J. Wakasugi ◽  
H. Takeda ◽  
T. Yamada

The Ca2+/inositol phospholipid signaling cascade has been implicated in the mechanism by which cholecystokinin (CCK) stimulates gastric somatostatin release, but a direct linkage between intracellular events in gastric D cells and somatostatin secretion has not been established. To address this problem we developed a method for correlating somatostatin release with the measurement of intracellular Ca2+ concentration ([Ca2+]i) in isolated D cells. Resting [Ca2+]i in single D cells was 100 +/- 5.7 nM (means +/- SE, n = 41), and CCK induced a rise in [Ca2+]i in a dose-dependent fashion, producing a maximal stimulatory effect (243 +/- 15% of control, n = 12) at a peptide concentration of 2 x 10(-8) M. The CCK-mediated increase in [Ca2+]i was biphasic, with a rapid, initial transient elevation followed by a sustained plateau. The rise in [Ca2+]i was accompanied by a concomitant increase in release of somatostatin-like immunoreactivity (SLI). Removal of extracellular Ca2+ had no effect on the initial transient elevation in [Ca2+]i induced by CCK but abolished both the sustained plateau in [Ca2+]i and the release of SLI. The selective CCK antagonist L-364, 718 (10(-7) M) inhibited the effects of CCK on both [Ca2+]i and SLI release. The nonspecific Ca2+ channel blocker NiCl2 (10(-3) M) and the L-type Ca2+ channel blocker nifedipine inhibited the sustained rise in [Ca2+]i and the release of SLI but left the initial transient increase in [Ca2+]i unaltered. These results indicate that CCK-stimulated release of SLI from D cells in the gastric fundus is linked to influx of extracellular Ca2+ via L-type Ca2+ channels.


1991 ◽  
Vol 261 (5) ◽  
pp. F873-F879 ◽  
Author(s):  
A. S. Brem ◽  
K. L. Matheson ◽  
J. L. Barnes ◽  
D. J. Morris

The enzyme 11 beta-hydroxysteroid dehydrogenase (11 beta-OHSD) metabolizes glucocorticoid hormones and diminishes their ability to induce sodium transport. In these studies, we determined the location of this enzyme in toad bladder and assessed the biological role for its 11-dehydro end product. Employing a polyclonal antibody directed toward 11 beta-OHSD and immunofluorescence techniques, we located the enzyme in the epithelial cell layer of the toad bladder. Although corticosterone (10(-7) M) can partially suppress aldosterone (10(-7) M)-stimulated short-circuit current (SCC), a clear excess of corticosterone (10(-6) M) did not inhibit the aldosterone-induced induced (10(-8) M) rise in SCC (n = 6). The 11-dehydro product of corticosterone, 11-dehydrocorticosterone (compound A) added to the serosal bath suppressed aldosterone (10(-8) M) peak SCC (360 min) in a dose-dependent fashion reaching 46 +/- 5% of control values at 10(-5) M (n = 6; P less than 0.001). Compound A (10(-5) M) in the mucosal bath also was capable of partially inhibiting the peak aldosterone rise in SCC to 63 +/- 7% of control values with aldosterone at 10(-8) M (n = 6; P less than 0.01) and to 64 +/- 10% of control values with aldosterone at 10(-7) M (n = 9; P less than 0.01). Compound A alone at 10(-5) M did not have any effect on SCC. Isolated toad bladders were not able to transform compound A (at 10(-8) and 10(-5) M) back to corticosterone. Thus the 11-dehydro end product of 11 beta-OHSD (compound A) may play a biologic role by regulating a component of mineralocorticoid-induced sodium transport.


2012 ◽  
Vol 221 (2) ◽  
pp. 333-340 ◽  
Author(s):  
M.M. Ewing ◽  
J.C. Karper ◽  
M.L. Sampietro ◽  
M.R. de Vries ◽  
K. Pettersson ◽  
...  

1990 ◽  
Vol 122 (3) ◽  
pp. 401-406 ◽  
Author(s):  
D.R. Miller ◽  
G. Gries ◽  
J.H. Borden

AbstractE-Myrcenol reduced catches of the pine engraver, Ips pini (Say), to ipsdienol-baited, multiple-funnel traps in a dose-dependent fashion. The sex ratio was unaffected by E-myrcenol treatments. Lures containing E-myrcenol in ethanol solution failed to protect freshly cut logs of lodgepole pine from attack by I. pini. Rather, I. pini preferentially attacked logs treated with devices releasing E-myrcenol and ethanol, over nontreated, control logs. Our results demonstrate that E-myrcenol is a new pheromone for I. pini, and emphasize the importance of understanding basic pheromone biology before utilisation of a semiochemical in forest pest management.


Sign in / Sign up

Export Citation Format

Share Document