scholarly journals Black Dots: Microcontact-Printed, Reference-Free Traction Force Microscopy

2021 ◽  
Author(s):  
Kevin M Beussman ◽  
Molly Y Mollica ◽  
Andrea Leonard ◽  
Jeffrey Miles ◽  
John Hocter ◽  
...  

Measuring the traction forces produced by cells provides insight into their behavior and physiological function. Here, we developed a technique (dubbed 'black dots') that microcontact prints a fluorescent micropattern onto a flexible substrate to measure cellular traction forces without constraining cell shape or needing to detach the cells. To demonstrate our technique, we assessed human platelets, which can generate a large range of forces within a population. We find platelets that exert more force have more spread area, are more circular, and have more uniformly distributed F-actin filaments. As a result of the high yield of data obtainable by this technique, we were able to evaluate multivariate mixed effects models with interaction terms and conduct a clustering analysis to identify clusters within our data. These statistical techniques demonstrated a complex relationship between spread area, circularity, F-actin dispersion, and platelet force, including cooperative effects that significantly associate with platelet traction forces.

2002 ◽  
Vol 282 (3) ◽  
pp. C617-C624 ◽  
Author(s):  
Dimitrije Stamenović ◽  
Srboljub M. Mijailovich ◽  
Iva Marija Tolić-Nørrelykke ◽  
Jianxin Chen ◽  
Ning Wang

The tensegrity model hypothesizes that cytoskeleton-based microtubules (MTs) carry compression as they balance a portion of cell contractile stress. To test this hypothesis, we used traction force microscopy to measure traction at the interface of adhering human airway smooth muscle cells and a flexible polyacrylamide gel substrate. The prediction is that if MTs balance a portion of contractile stress, then, upon their disruption, the portion of stress balanced by MTs would shift to the substrate, thereby causing an increase in traction. Measurements were done first in maximally activated cells (10 μM histamine) and then again after MTs had been disrupted (1 μM colchicine). We found that after disruption of MTs, traction increased on average by ∼13%. Because in activated cells colchicine induced neither an increase in intracellular Ca2+ nor an increase in myosin light chain phosphorylation as shown previously, we concluded that the observed increase in traction was a result of load shift from MTs to the substrate. In addition, energy stored in the flexible substrate was calculated as work done by traction on the deformation of the substrate. This result was then utilized in an energetic analysis. We assumed that cytoskeleton-based MTs are slender elastic rods supported laterally by intermediate filaments and that MTs buckle as the cell contracts. Using the post-buckling equilibrium theory of Euler struts, we found that energy stored during buckling of MTs was quantitatively consistent with the measured increase in substrate energy after disruption of MTs. This is further evidence supporting the idea that MTs are intracellular compression-bearing elements.


2018 ◽  
Author(s):  
Brian P. Griffin ◽  
Christopher J. Largaespada ◽  
Nicole A. Rinaldi ◽  
Christopher A. Lemmon

AbstractMany methods exist for quantifying cellular traction forces, including traction force microscopy and microfabricated post arrays. However, these methodologies have limitations, including a requirement to remove cells to determine undeflected particle locations and the inability to quantify forces of cells with low cytoskeletal stiffness, respectively. Here we present a novel method of traction force quantification that eliminates both of these limitations. Through the use of a hexagonal pattern of microcontact-printed protein spots, a novel computational algorithm, and thin surfaces of polydimethyl siloxane (PDMS) blends, we demonstrate a system that quantifies cellular forces on a homogeneous surface that is stable, easily manufactured, and can quantify forces without need for cellular removal.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e69850 ◽  
Author(s):  
Juan C. del Álamo ◽  
Ruedi Meili ◽  
Begoña Álvarez-González ◽  
Baldomero Alonso-Latorre ◽  
Effie Bastounis ◽  
...  

Author(s):  
Steven Huth ◽  
Johannes W. Blumberg ◽  
Dimitri Probst ◽  
Jan Lammerding ◽  
Ulrich S. Schwarz ◽  
...  

AbstractMammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites. We here present a novel approach to quantify intracellular force transmission by combining microneedle shearing at the apical cell surface with traction force microscopy at the basal cell surface. The change of traction forces exerted by fibroblasts to underlying polyacrylamide substrates as a response to a known shear force exerted with a calibrated microneedle reveals that cells redistribute forces dynamically under external shearing and during sequential rupture of their adhesion sites. Our quantitative results demonstrate a transition from dipolar to monopolar traction patterns, an inhomogeneous distribution of the external shear force to the adhesion sites as well as dynamical changes in force loading prior to and after the rupture of single adhesion sites. Our strategy of combining traction force microscopy with external force application opens new perspectives for future studies of force transmission and mechanotransduction in cells.


2021 ◽  
Vol 32 (18) ◽  
pp. 1737-1748
Author(s):  
Somanna Kollimada ◽  
Fabrice Senger ◽  
Timothée Vignaud ◽  
Manuel Théry ◽  
Laurent Blanchoin ◽  
...  

The endogenous content of proteins associated with force production and the resultant traction forces were quantified in the same cells using a new traction force-microscopy assay. Focal adhesion size correlated with force in stationary cells. Relative numbers of motors and cross-linkers per actin required an optimum to maximize cell force production.


Author(s):  
Kevin M. Beussman ◽  
Molly Y. Mollica ◽  
Andrea Leonard ◽  
Jeffrey Miles ◽  
John Hocter ◽  
...  

Author(s):  
Kazuaki Nagayama ◽  
Yasuhiro Hamada ◽  
Takuya Inoue ◽  
Takeo Matsumoto

Traction force generated at focal adhesions (FAs) of cells plays an essential role in regulating various cellular functions. The force can be measured by plating cells on a flexible substrate to observe local displacement of the substrate caused by the forces (1–100 nN) [1]. Approaches employing this method include using microfabricated arrays of poly(dimethylsiloxane) (PDMS) micropillars that bend by cellular traction forces [2]. If you could apply forces to individual FAs independently by actively moving micropillars, it should become a powerful tool to delineate the cellular mechanotransduction mechanisms.


2014 ◽  
Vol 66 (5) ◽  
Author(s):  
Xavier Trepat

A virtually universal feature of adherent cells is their ability to exert traction forces. To measure these forces, several methods have been developed over the past 15 years. In this issue of Applied Mechanics Reviews, Álvarez-González and co-workers review their own traction force microscopy approach and its application to the study of amoeboid cell locomotion. They show that the cycle of cell motility is exquisitely synchronized by a cycle of traction forces. In addition, they show how traction forces and cell cycle synchronization are affected by myosin and SCAR/WAVE mutants. Here, I discuss some open questions that derive from the work of the authors and other laboratories as regards the relationship between cell motility and traction forces.


Soft Matter ◽  
2018 ◽  
Vol 14 (31) ◽  
pp. 6571-6581 ◽  
Author(s):  
Jana Hanke ◽  
Dimitri Probst ◽  
Assaf Zemel ◽  
Ulrich S. Schwarz ◽  
Sarah Köster

Using time-resolved traction force microscopy on soft elastic substrates of variable stiffness, here we show that human platelets generate highly dynamic force patterns and an exceptionally high level of internal stress.


Sign in / Sign up

Export Citation Format

Share Document