scholarly journals Single Cell Atlas of Human Dura Reveals Cellular Meningeal Landscape and Insights into Meningioma Immune Response

2021 ◽  
Author(s):  
Anthony Z Wang ◽  
Jay Bowman-Kirigin ◽  
Rupen Desai ◽  
Pujan Patel ◽  
Bhuvic Patel ◽  
...  

Recent investigation of the meninges, specifically the dura layer, has highlighted its importance in CNS immune surveillance beyond a purely structural role. However, most of our understanding of the meninges stems from the use of pre-clinical models rather than human samples. In this study, we use single cell RNA-sequencing to perform the first characterization of both non-tumor-associated human dura and meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, through T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. We also identify a functionally heterogeneous population of non-immune cell types and report copy-number variant heterogeneity within our meningioma samples. Our comprehensive investigation of both the immune and non-immune cell landscapes of human dura and meningioma at a single cell resolution provide new insight into previously uncharacterized roles of human dura.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rongqun Guo ◽  
Mengdie Lü ◽  
Fujiao Cao ◽  
Guanghua Wu ◽  
Fengcai Gao ◽  
...  

Abstract Background Knowledge of immune cell phenotypes, function, and developmental trajectory in acute myeloid leukemia (AML) microenvironment is essential for understanding mechanisms of evading immune surveillance and immunotherapy response of targeting special microenvironment components. Methods Using a single-cell RNA sequencing (scRNA-seq) dataset, we analyzed the immune cell phenotypes, function, and developmental trajectory of bone marrow (BM) samples from 16 AML patients and 4 healthy donors, but not AML blasts. Results We observed a significant difference between normal and AML BM immune cells. Here, we defined the diversity of dendritic cells (DC) and macrophages in different AML patients. We also identified several unique immune cell types including T helper cell 17 (TH17)-like intermediate population, cytotoxic CD4+ T subset, T cell: erythrocyte complexes, activated regulatory T cells (Treg), and CD8+ memory-like subset. Emerging AML cells remodels the BM immune microenvironment powerfully, leads to immunosuppression by accumulating exhausted/dysfunctional immune effectors, expending immune-activated types, and promoting the formation of suppressive subsets. Conclusion Our results provide a comprehensive AML BM immune cell census, which can help to select pinpoint targeted drug and predict efficacy of immunotherapy.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tracy M. Yamawaki ◽  
Daniel R. Lu ◽  
Daniel C. Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5′ v1 and 3′ v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. Conclusion Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2020 ◽  
Author(s):  
Chi-Ming Kevin Li ◽  
Tracy M Yamawaki ◽  
Daniel R Lu ◽  
Daniel C Ellwanger ◽  
Dev Bhatt ◽  
...  

Abstract Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the fieldof immunology by deepening the characterization of immune heterogeneity and leading to thediscovery of new subtypes. However, single-cell methods inherently suffer from limitations in therecovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropoutevents. This issue is often compounded by limited sample availability and limited prior knowledge ofheterogeneity, which can confound data interpretation.Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. Weprepared 21 libraries under identical conditions of a defined mixture of two human and two murinelymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluatemethods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expressionsignatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events whichfacilitates the identification of differentially-expressed genes and improves the concordance of singlecellprofiles to immune bulk RNA-seq signatures.Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which canguide selection of a high-throughput single-cell RNA-seq method for profiling more complex immunecellheterogeneity usually found in vivo.


2021 ◽  
Author(s):  
Congmin Xu ◽  
Junkai Yang ◽  
Astrid Kosters ◽  
Benjamin R Babcock ◽  
Peng Qiu ◽  
...  

Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissue and disease contexts. Still, deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in our multi-omics single-cell datasets, we developed SuPERR-seq, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery and characterization of previously hidden cell subsets. We show that by incorporating information from cell-surface proteins and immunoglobulin transcript counts, we accurately remove cell doublets and prevent widespread cell-type misclassification. This approach uniquely improves the identification of heterogeneous cell types in the human immune system, including a novel subset of antibody-secreting cells in the bone marrow.


2021 ◽  
Author(s):  
Conde C Domínguez ◽  
T Gomes ◽  
LB Jarvis ◽  
C Xu ◽  
SK Howlett ◽  
...  

AbstractDespite their crucial role in health and disease, our knowledge of immune cells within human tissues, in contrast to those circulating in the blood, remains limited. Here, we surveyed the immune compartment of lymphoid and non-lymphoid tissues of six adult donors by single-cell RNA sequencing, including alpha beta T-cell receptor (αβ TCR), gamma delta (γδ) TCR and B-cell receptor (BCR) variable regions. To aid systematic cell type identification we developed CellTypist, a tool for automated and accurate cell type annotation. Using this approach combined with manual curation, we determined the tissue distribution of finely phenotyped immune cell types and cell states. This revealed tissue-specific features within cell subsets, such as a subtype of activated dendritic cells in the airways (expressing CSF2RA, GPR157, CRLF2), ITGAD-expressing γδ T cells in spleen and liver, and ITGAX+ splenic memory B cells. Single cell paired chain TCR analysis revealed cell type-specific biases in VDJ usage, and BCR analysis revealed characteristic patterns of somatic hypermutation and isotype usage in plasma and memory B cell subsets. In summary, our multi-tissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis and antigen receptor sequencing.


2020 ◽  
Author(s):  
Tracy M Yamawaki ◽  
Daniel R Lu ◽  
Daniel C Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluate methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’ v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures.Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2020 ◽  
Author(s):  
Tracy M. Yamawaki ◽  
Daniel R. Lu ◽  
Daniel C. Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

AbstractBackgroundElucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation.ResultsHere, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluate methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’ v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures.ConclusionOverall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2017 ◽  
Vol 27 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Santiago J. Carmona ◽  
Sarah A. Teichmann ◽  
Lauren Ferreira ◽  
Iain C. Macaulay ◽  
Michael J.T. Stubbington ◽  
...  

2021 ◽  
Author(s):  
Tracy M Yamawaki ◽  
Daniel R Lu ◽  
Daniel C Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluate methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’ v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures.Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Andrew Donson ◽  
Kent Riemondy ◽  
Sujatha Venkataraman ◽  
Ahmed Gilani ◽  
Bridget Sanford ◽  
...  

Abstract We explored cellular heterogeneity in medulloblastoma using single-cell RNA sequencing (scRNAseq), immunohistochemistry and deconvolution of bulk transcriptomic data. Over 45,000 cells from 31 patients from all main subgroups of medulloblastoma (2 WNT, 10 SHH, 9 GP3, 11 GP4 and 1 GP3/4) were clustered using Harmony alignment to identify conserved subpopulations. Each subgroup contained subpopulations exhibiting mitotic, undifferentiated and neuronal differentiated transcript profiles, corroborating other recent medulloblastoma scRNAseq studies. The magnitude of our present study builds on the findings of existing studies, providing further characterization of conserved neoplastic subpopulations, including identification of a photoreceptor-differentiated subpopulation that was predominantly, but not exclusively, found in GP3 medulloblastoma. Deconvolution of MAGIC transcriptomic cohort data showed that neoplastic subpopulations are associated with major and minor subgroup subdivisions, for example, photoreceptor subpopulation cells are more abundant in GP3-alpha. In both GP3 and GP4, higher proportions of undifferentiated subpopulations is associated with shorter survival and conversely, differentiated subpopulation is associated with longer survival. This scRNAseq dataset also afforded unique insights into the immune landscape of medulloblastoma, and revealed an M2-polarized myeloid subpopulation that was restricted to SHH medulloblastoma. Additionally, we performed scRNAseq on 16,000 cells from genetically engineered mouse (GEM) models of GP3 and SHH medulloblastoma. These models showed a level of fidelity with corresponding human subgroup-specific neoplastic and immune subpopulations. Collectively, our findings advance our understanding of the neoplastic and immune landscape of the main medulloblastoma subgroups in both humans and GEM models.


Sign in / Sign up

Export Citation Format

Share Document