scholarly journals Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system

2021 ◽  
Author(s):  
Congmin Xu ◽  
Junkai Yang ◽  
Astrid Kosters ◽  
Benjamin R Babcock ◽  
Peng Qiu ◽  
...  

Single-cell transcriptomics enables the definition of diverse human immune cell types across multiple tissue and disease contexts. Still, deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in our multi-omics single-cell datasets, we developed SuPERR-seq, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery and characterization of previously hidden cell subsets. We show that by incorporating information from cell-surface proteins and immunoglobulin transcript counts, we accurately remove cell doublets and prevent widespread cell-type misclassification. This approach uniquely improves the identification of heterogeneous cell types in the human immune system, including a novel subset of antibody-secreting cells in the bone marrow.

2020 ◽  
Author(s):  
Tatyana Dobreva ◽  
David Brown ◽  
Jong Hwee Park ◽  
Matt Thomson

AbstractAn individual’s immune system is driven by both genetic and environmental factors that vary over time. To better understand the temporal and inter-individual variability of gene expression within distinct immune cell types, we developed a platform that leverages multiplexed single-cell sequencing and out-of-clinic capillary blood extraction to enable simplified, cost-effective profiling of the human immune system across people and time at single-cell resolution. Using the platform, we detect widespread differences in cell type-specific gene expression between subjects that are stable over multiple days.SummaryIncreasing evidence implicates the immune system in an overwhelming number of diseases, and distinct cell types play specific roles in their pathogenesis.1,2 Studies of peripheral blood have uncovered a wealth of associations between gene expression, environmental factors, disease risk, and therapeutic efficacy.4 For example, in rheumatoid arthritis, multiple mechanistic paths have been found that lead to disease, and gene expression of specific immune cell types can be used as a predictor of therapeutic non-response.12 Furthermore, vaccines, drugs, and chemotherapy have been shown to yield different efficacy based on time of administration, and such findings have been linked to the time-dependence of gene expression in downstream pathways.21,22,23 However, human immune studies of gene expression between individuals and across time remain limited to a few cell types or time points per subject, constraining our understanding of how networks of heterogeneous cells making up each individual’s immune system respond to adverse events and change over time.


2021 ◽  
Author(s):  
Conde C Domínguez ◽  
T Gomes ◽  
LB Jarvis ◽  
C Xu ◽  
SK Howlett ◽  
...  

AbstractDespite their crucial role in health and disease, our knowledge of immune cells within human tissues, in contrast to those circulating in the blood, remains limited. Here, we surveyed the immune compartment of lymphoid and non-lymphoid tissues of six adult donors by single-cell RNA sequencing, including alpha beta T-cell receptor (αβ TCR), gamma delta (γδ) TCR and B-cell receptor (BCR) variable regions. To aid systematic cell type identification we developed CellTypist, a tool for automated and accurate cell type annotation. Using this approach combined with manual curation, we determined the tissue distribution of finely phenotyped immune cell types and cell states. This revealed tissue-specific features within cell subsets, such as a subtype of activated dendritic cells in the airways (expressing CSF2RA, GPR157, CRLF2), ITGAD-expressing γδ T cells in spleen and liver, and ITGAX+ splenic memory B cells. Single cell paired chain TCR analysis revealed cell type-specific biases in VDJ usage, and BCR analysis revealed characteristic patterns of somatic hypermutation and isotype usage in plasma and memory B cell subsets. In summary, our multi-tissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis and antigen receptor sequencing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatyana Dobreva ◽  
David Brown ◽  
Jong Hwee Park ◽  
Matt Thomson

AbstractAn individual’s immune system is driven by both genetic and environmental factors that vary over time. To better understand the temporal and inter-individual variability of gene expression within distinct immune cell types, we developed a platform that leverages multiplexed single-cell sequencing and out-of-clinic capillary blood extraction to enable simplified, cost-effective profiling of the human immune system across people and time at single-cell resolution. Using the platform, we detect widespread differences in cell type-specific gene expression between subjects that are stable over multiple days.


2021 ◽  
Author(s):  
Anthony Z Wang ◽  
Jay Bowman-Kirigin ◽  
Rupen Desai ◽  
Pujan Patel ◽  
Bhuvic Patel ◽  
...  

Recent investigation of the meninges, specifically the dura layer, has highlighted its importance in CNS immune surveillance beyond a purely structural role. However, most of our understanding of the meninges stems from the use of pre-clinical models rather than human samples. In this study, we use single cell RNA-sequencing to perform the first characterization of both non-tumor-associated human dura and meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, through T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. We also identify a functionally heterogeneous population of non-immune cell types and report copy-number variant heterogeneity within our meningioma samples. Our comprehensive investigation of both the immune and non-immune cell landscapes of human dura and meningioma at a single cell resolution provide new insight into previously uncharacterized roles of human dura.


Author(s):  
Tadepally Lakshmikanth ◽  
Sayyed Auwn Muhammad ◽  
Axel Olin ◽  
Yang Chen ◽  
Jaromir Mikes ◽  
...  

SUMMARYThe human immune system varies extensively between individuals, but variation within individuals over time has not been well characterized. Systems-level analyses allow for simultaneous quantification of many interacting immune system components, and the inference of global regulatory principles. Here we present a longitudinal, systems-level analysis in 99 healthy adults, 50 to 65 years of age and sampled every 3rd month during one year. We describe the structure of inter-individual variation and characterize extreme phenotypes along a principal curve. From coordinated measurement fluctuations, we infer relationships between 115 immune cell populations and 750 plasma proteins constituting the blood immune system. While most individuals have stable immune systems, the degree of longitudinal variability is an individual feature. The most variable individuals, in the absence of overt infections, exhibited markers of poor metabolic health suggestive of a functional link between metabolic and immunologic homeostatic regulation.HIGHLIGHTSLongitudinal variation in immune cell composition during one yearInter-individual variation can be described along a principal curveImmune cell and protein relationships are inferredVariability over time is an individual feature correlating with markers of poor metabolic health


2020 ◽  
Vol 3 (1) ◽  
pp. 74-92 ◽  
Author(s):  
Philip C Calder

The immune system protects the host from pathogenic organisms (bacteria, viruses, fungi, parasites). To deal with this array of threats, the immune system has evolved to include a myriad of specialised cell types, communicating molecules and functional responses. The immune system is always active, carrying out surveillance, but its activity is enhanced if an individual becomes infected. This heightened activity is accompanied by an increased rate of metabolism, requiring energy sources, substrates for biosynthesis and regulatory molecules, which are all ultimately derived from the diet. A number of vitamins (A, B6, B12, folate, C, D and E) and trace elements (zinc, copper, selenium, iron) have been demonstrated to have key roles in supporting the human immune system and reducing risk of infections. Other essential nutrients including other vitamins and trace elements, amino acids and fatty acids are also important. Each of the nutrients named above has roles in supporting antibacterial and antiviral defence, but zinc and selenium seem to be particularly important for the latter. It would seem prudent for individuals to consume sufficient amounts of essential nutrients to support their immune system to help them deal with pathogens should they become infected. The gut microbiota plays a role in educating and regulating the immune system. Gut dysbiosis is a feature of disease including many infectious diseases and has been described in COVID-19. Dietary approaches to achieve a healthy microbiota can also benefit the immune system. Severe infection of the respiratory epithelium can lead to acute respiratory distress syndrome (ARDS), characterised by excessive and damaging host inflammation, termed a cytokine storm. This is seen in cases of severe COVID-19. There is evidence from ARDS in other settings that the cytokine storm can be controlled by n-3 fatty acids, possibly through their metabolism to specialised pro-resolving mediators.


2019 ◽  
Vol 48 (2) ◽  
pp. 302-316 ◽  
Author(s):  
Michelle Curran ◽  
Maelle Mairesse ◽  
Alba Matas-Céspedes ◽  
Bethany Bareham ◽  
Giovanni Pellegrini ◽  
...  

Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.


2020 ◽  
Author(s):  
Shuai He ◽  
Lin-He Wang ◽  
Yang Liu ◽  
Yi-Qi Li ◽  
Hai-Tian Chen ◽  
...  

ABSTRACTBackgroundAs core units of organ tissues, cells of various types play their harmonious rhythms to maintain the homeostasis of the human body. It is essential to identify the characteristics of cells in human organs and their regulatory networks for understanding the biological mechanisms related to health and disease. However, a systematic and comprehensive single-cell transcriptional profile across multiple organs of a normal human adult is missing.ResultsWe perform single-cell transcriptomes of 84,363 cells derived from 15 tissue organs of one adult donor and generate an adult human cell atlas. The adult human cell atlas depicts 252 subtypes of cells, including major cell types such as T, B, myeloid, epithelial, and stromal cells, as well as novel COCH+ fibroblasts and FibSmo cells, each of which is distinguished by multiple marker genes and transcriptional profiles. These collectively contribute to the heterogeneity of major human organs. Moreover, T cell and B cell receptor repertoire comparisons and trajectory analyses reveal direct clonal sharing of T and B cells with various developmental states among different tissues. Furthermore, novel cell markers, transcription factors and ligand-receptor pairs are identified with potential functional regulations in maintaining the homeostasis of human cells among tissues.ConclusionsThe adult human cell atlas reveals the inter- and intra-organ heterogeneity of cell characteristics and provides a useful resource in uncovering key events during the development of human diseases in the context of the heterogeneity of cells and organs.


2021 ◽  
Author(s):  
Lauren E Fuess ◽  
Daniel I Bolnick

Pathogenic infection is an important driver of many ecological processes. Furthermore, variability in immune function is an important driver of differential infection outcomes. New evidence would suggest that immune variation extends to broad cellular structure of immune systems. However, variability at such broad levels is traditionally difficult to detect in non-model systems. Here we leverage single cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight major immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types, among the three populations of fish. This variability may contribute to observed variability in parasite susceptibility. Finally, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data. Combined our study demonstrates the power of single cell sequencing to not only document evolutionary phenomena (i.e. microevolution of immune cells), but also increase the power of traditional transcriptomic datasets.


Sign in / Sign up

Export Citation Format

Share Document