scholarly journals Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair

2021 ◽  
Author(s):  
Gianluca Sigismondo ◽  
Lavinia Arseni ◽  
Thomas G Hofmann ◽  
Martina Seiffert ◽  
Jeroen Krijgsveld

The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via interplay among all chromatin layers including DNA, histones post-translational modifications (hPTMs), and chromatin-associated proteins. Here we employ multi-layered proteomics to characterize chromatin-mediated interactions of repair proteins, signatures of hPTMs, and the DNA-bound proteome during DNA double-strand break repair at high temporal resolution. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining or homologous recombination (HR) revealing histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and PARP inhibitor sensitivity. Furthermore, we dynamically profile numerous hPTMs at γH2AX-mononucleosomes during the DDR. Integration of these complementary data implicated G9A-mediated monomethylation of H3K56 in HR. Collectively, we provide a dynamic chromatin-centered view of DDR, while representing a valuable resource for the use of PARP inhibitors in cancer.

Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lior Onn ◽  
Miguel Portillo ◽  
Stefan Ilic ◽  
Gal Cleitman ◽  
Daniel Stein ◽  
...  

DNA double-strand breaks (DSB) are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure that has high affinity for DSB. SIRT6 relocates to sites of damage independently of signaling and known sensors. It activates downstream signaling for DSB repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of the homologous recombination and non-homologous end joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as a DNA damage sensor, a critical factor in initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB-binding capacity and DDR activation. SIRT6 activates the DDR before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 as a sensor of DSB, and pave the road to dissecting the contributions of distinct DSB sensors in downstream signaling.


2021 ◽  
Author(s):  
Xiaocui Li ◽  
Xiaojuan Li ◽  
Chen Xie ◽  
Sihui Cai ◽  
Mengqiu Li ◽  
...  

AbstractAs a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.


2012 ◽  
Vol 40 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Johanne M. Murray ◽  
Tom Stiff ◽  
Penny A. Jeggo

DNA DSBs (double-strand breaks) represent a critical lesion for a cell, with misrepair being potentially as harmful as lack of repair. In mammalian cells, DSBs are predominantly repaired by non-homologous end-joining or homologous recombination. The kinetics of repair of DSBs can differ widely, and recent studies have shown that the higher-order chromatin structure can dramatically affect the pathway utilized, the rate of repair and the genetic factors required for repair. Studies of the repair of DSBs arising within heterochromatic DNA regions have provided insight into the constraints that higher-order chromatin structure poses on repair and the processing that is uniquely required for the repair of such DSBs. In the present paper, we provide an overview of our current understanding of the process of heterochromatic DSB repair in mammalian cells and consider the evolutionary conservation of the processes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xuan Li ◽  
Jessica K Tyler

The cell achieves DNA double-strand break (DSB) repair in the context of chromatin structure. However, the mechanisms used to expose DSBs to the repair machinery and to restore the chromatin organization after repair remain elusive. Here we show that induction of a DSB in human cells causes local nucleosome disassembly, apparently independently from DNA end resection. This efficient removal of histone H3 from the genome during non-homologous end joining was promoted by both ATM and the ATP-dependent nucleosome remodeler INO80. Chromatin reassembly during DSB repair was dependent on the HIRA histone chaperone that is specific to the replication-independent histone variant H3.3 and on CAF-1 that is specific to the replication-dependent canonical histones H3.1/H3.2. Our data suggest that the epigenetic information is re-established after DSB repair by the concerted and interdependent action of replication-independent and replication-dependent chromatin assembly pathways.


2021 ◽  
Author(s):  
Umar Khalid ◽  
Milena Simovic ◽  
Murat Iskar ◽  
John KL Wong ◽  
Rithu Kumar ◽  
...  

ABSTRACTChromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses, and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


2021 ◽  
Author(s):  
Doraid T. Sadideen ◽  
Baowei Chen ◽  
Manal Basili ◽  
Montaser Shaheen

AbstractDNA double strand breaks (DSBs) are repair by homology-based repair or non-homologous end joining and multiple sub-pathways exist. 53BP1 is a key DNA double strand break repair protein that regulates repair pathway choice. It is key for joining DSBs during immunoglobulin heavy chain class switch recombination. Here we identify USP47 as a deubiquitylase that associates with and regulates 53BP1 function. USP47 loss results in 53BP1 instability in proteasome dependent manner, and defective 53BP1 ionizing radiation induced foci (IRIF). USP47 catalytic activity is required for maintaining 53BP1 protein level. Similar to 53BP1, USP47 depletion results in sensitivity to DNA DSB inducing agents and defective immunoglobulin CSR. Our findings establish a function for USP47 in DNA DSB repair at least partially through 53BP1.


2018 ◽  
Author(s):  
Alexander J. Garvin ◽  
Alexandra K. Walker ◽  
Ruth M. Densham ◽  
Anoop Singh Chauhan ◽  
Helen R. Stone ◽  
...  

AbstractSUMOylation in the DNA double-strand break (DSB) response regulates recruitment, activity and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and non-homologous enjoining (NHEJ) through the investigation of the deSUMOylase SENP2. We find regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast we show HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 foci retention and increases NHEJ and radioresistance. Collectively our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.


Author(s):  
Ruben Schep ◽  
Eva K. Brinkman ◽  
Christ Leemans ◽  
Xabier Vergara ◽  
Ben Morris ◽  
...  

AbstractDNA double-strand break (DSB) repair is mediated by multiple pathways, including classical non-homologous end-joining pathway (NHEJ) and several homology-driven repair pathways. This is particularly important for Cas9-mediated genome editing, where the outcome critically depends on the pathway that repairs the break. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a newly developed multiplexed reporter assay in combination with Cas9 cutting, we systematically measured the relative activities of three DSB repair pathways as function of chromatin context in >1,000 genomic locations. This revealed that NHEJ is broadly biased towards euchromatin, while microhomology-mediated end-joining (MMEJ) is more efficient in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 shifts the balance towards NHEJ. Single-strand templated repair (SSTR), often used for precise CRISPR editing, competes with MMEJ, and this competition is weakly associated with chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance, and guidance for the design of Cas9-mediated genome editing experiments.


Sign in / Sign up

Export Citation Format

Share Document